تحلیل سری زمانی فرونشست زمین در غرب استان تهران (دشت شهریار) و ارتباط آن با برداشت آب‌های زیرزمینی با تکنیک تداخل‌سنجی راداری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه سنجش از دور و GIS، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران

2 استادیار گروه سنجش از دور و GIS، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران

3 دانشجوی کارشناسی‌ارشد گروه سنجش از دور و GIS، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران

10.22126/ges.2020.4933.2182

چکیده

فرونشست زمین به­مثابة یکی از انواع مخاطرات طبیعی و زمین‌شناسی به­شمار می­آید که می­تواند به­طور طبیعی یا براثر فعّالیّت­های انسانی همچون برداشت درازمدّت آب زیرزمینی و کشاورزی سنّتی حاصل شود. در دو دهة اخیر پیرو رخداد تغییرات اقلیم و خشکسالی­های پیاپی از یک­سو و نیز مدیریت غیر اصولی منابع آب، برداشت بی­رویة آب­های زیرزمینی و رشد فزایندة جمعیّت، سبب رخداد فرونشست در استان تهران به­ویژه منطقة دشتی واقع در غرب استان شده است. به‌طور کلّی هدف از پژوهش حاضر پایش و اندازه­گیری فرونشست زمین با استفاده از رویکرد تداخل­سنجی راداری و همچنین تحلیل و بررسی ارتباط بین تغییرات سطح آب­های زیرزمینی و فرونشست زمین در غرب استان تهران است. بدین­منظور از سری زمانی تصاویر ماهوارة ENVISAT-ASAR از سال 2003 تا 2010 بهره گرفته شد. به­منظور تحلیل سری زمانی جابه­جایی سطح زمین و تولید نقشة متوسّط نرخ جا­به­جایی، از الگوریتم زیرمجموعة خطّ مبنای کوتاه (SBAS) استفاده شد. نتایج تحلیل سری زمانی داده­های تداخل­سنجی نشان­دهندة رخداد فرونشست به­صورت پیوسته در زمین­های کشاورزی منطقه است که سرعت میانگین تغییر شکل درراستای خطّ دید ماهواره حاصل از تحلیل سری زمانی، جابه­جایی را با نرخ متوسّط 10- سانتی­متر و حداکثر 27- سانتی­متر در سال در منطقة دشتی نشان می­دهد؛ همچنین نتایج حاصل از بررسی تغییرات سطح آب زیرزمینی در وازده چاهک مشاهداتی برای بازة زمانی مورد بررسی در منطقة مورد مطالعه نیز نشان­دهندة کاهش به­طور متوسّط ۵/۰ تا ۵/۱ متری سطح آب در آبخوان منطقه است. همبستگی کلّی بین تغییرات سطح آب زیرزمینی و میزان فرونشست، معادل ۴۵/۸۹% تخمین زده شد که نشانگر وابستگی رخداد فرونشست و برداشت آب­های زیرزمینی در منطقه است.

کلیدواژه‌ها

موضوعات


حقیقت­مهر، پریسا؛ ولدان­زوج، محمدجواد؛ تاجیک، رضا؛ جباری، سعید؛ صاحبی، محمودرضا؛ اسلامی، رضا؛ گنجیان، مصطفی؛ دهقانی، مریم (1391) تحلیل سری زمانی فرونشست هشتگرد با استفاده از روش تداخل‌سنجی راداری و سامانه موقعیت‌یابی جهانی. علوم زمین، ۲۲ (۸۵)، 105-114.

سلیمانی، مسعود؛ حمزه، سعید؛ پاپی، رامین (1397). پتانسیل‌یابی اراضی مستعدّ کشت گردو در استان تهران با روش Fuzzy AHP. نشریة حفاظت منابع آب­وخاک، 8 (1)، 49-72.

References

Agrawala, S., Barlow, M., Cullen, H. & Lyon, B. (2001). The drought and humanitarian crisis in central and southwest Asia: A climate perspective. International Research Institute for Climate Prediction. https://doi.org/10.7916/D8NZ8FHQ.

Alipour, S., Motgah, M., Sharifi, M. A. & Walter, T. R. (2008). InSAR time series investigation of land subsidence due to groundwater overexploitation in Tehran, Iran. 2008 Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, track 414, 1-5. https://doi.org/10.1109/USEREST.2008.4740370.

Arabi, S., Montazerian, A. R., Maleki, E. & Talebi, A. (2005). Study of land subsidence in south-west of Tehran. Journal of Engineering and Surveying, 69, 14-24.

Bamler, R. & Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14 (4), R1.

Baran, I., Stewart, M. P., Kampes, B. M., Perski, Z. & Lilly, P. (2003). A modification to the Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote Sensing, 41 (9), 2114-2118.

Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40 (11), 2375-2383.

Buckley, S. M., Rosen, P. A., Hensley, S. & Tapley, B. D. (2003). Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. Journal of Geophysical Research: Solid Earth, 108 (B11), 8-1-8-12.

Bürgmann, R., Rosen, P. A. & Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 28 (1), 169-209.

Chaussard, E., Amelung, F., Abidin, H. & Hong, S.-H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150-161. https://doi.org/10.1016/j.rse.2012.10.015

Chen, C., Pei, S. & Jiao, J. (2003). Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeology Journal, 11 (2), 275-287.

Chen, J., Knight, R., Zebker, H. A. & Schreüder, W. A. (2016). Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations. Water Resources Research, 52 (5), 3623-3636.

Cigna, F., Osmanoğlu, B., Cabral-Cano, E., Dixon, T. H., Ávila-Olivera, J. A., Garduño-Monroy, V. H., DeMets, C. & Wdowinski, S. (2012). Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sensing of Environment, 117, 146-161.

Dawson, J. H. (2008). Satellite radar interferometry with application to the observation of surface deformation in Australia.

Dehghani, M., Valadan Zoej, M. J., Entezam, I., Mansourian, A. & Saatchi, S. (2009 a). InSAR monitoring of progressive land subsidence in Neyshabour, northeast Iran. Geophysical Journal International, 178 (1), 47-56. https://doi.org/10.1111/j.1365-246X.2009.04135.x.

Dehghani, M., Zoej, M. J. V., Saatchi, S., Biggs, J., Parsons, B. & Wright, T. (2009 b). Radar interferometry time series analysis of Mashhad subsidence. Journal of the Indian Society of Remote Sensing, 37 (1), 147-156. https://doi.org/10.1007/s12524-009-0006-x.

Dehghani, M., Zoej, M. J. V., Hooper, A., Hanssen, R. F., Entezam, I. & Saatchi, S. (2013). Hybrid conventional and persistent scatterer SAR interferometry for land subsidence monitoring in the Tehran Basin, Iran. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 157-170.

Eggleston, J. & Pope, J. (2013). Land subsidence and relative sea-level rise in the southern Chesapeake Bay region. US Geological Survey Circular, 1392, 30 p. https://dx.doi.org/ 10.3133/cir1392.

Esmaeili, M. & Motagh, M. (2016). Improved persistent scatterer analysis using amplitude dispersion index optimization of dual polarimetry data. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 108-114.

Esmaeili, M., Motagh, M. & Hooper, A. (2017). Application of dual-polarimetry SAR images in multitemporal InSAR processing. IEEE Geoscience and Remote Sensing Letters, 14 (9), 1489-1493.

Ferretti, A., Prati, C. & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38 (5), 2202-2212.

Fruneau, B. & Sarti, F. (2000). Detection of ground subsidence in the city of Paris using radar interferometry: isolation of deformation from atmospheric artifacts using correlation. Geophysical Research Letters, 27(24), 3981-3984.

Galloway, D. L. & Burbey, T. J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19 (8), 1459-1486. https://doi.org/10.1007/ s10040-011-0775-5.

Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F. & Rosen, P. A. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34 (10), 2573-2585.

Ghiglia, D. C. & Pritt, M. D. (1998). Two-dimensional phase unwrapping: theory, algorithms, and software (Vol. 4). Wiley New York.

Goldstein, R. M. & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25 (21), 4035-4038.

Haghighatmehr, P., Valadan Zoej, M. J., Tajik, R., Jabbari, S., Sahebi, M. R., Eslami, R., Ganjian, M. & Dehghani, M. (2012). Time series analysis of Hashtgerd subsidence using InSAR technique and global positioning system. Journal of Earth Sciences, 22 (85), 105-114. (In Persian)

Haghighi, M. H. & Motagh, M. (2019). Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sensing of Environment, 221, 534-550.

Haghshenas-Haghighi, M., Motagh, M. & Esmaeili, M. (2013). continuous compaction of aquifer system in Tehran, Iran, as evidenced by C-band, L-band and X-band radar measurements. The 5th TerraSAR-X Science Team Meeting.

Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2). Springer Science & Business Media.

Hoffmann, J., Zebker, H. A., Galloway, D. L. & Amelung, F. (2001). Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by Synthetic Aperture Radar Interferometry. Water Resources Research, 37 (6), 1551-1566. https://doi.org/10.1029/2000WR900404.

Hoffmann, J., Leake, S. A., Galloway, D. L. & Wilson, A. (2003). MODFLOW-2000 ground-water model—User guide to the Subsidence and Aquifer-System Compaction (SUB) Package. US Geological Survey Open-File Report 03-233, 46.

Holzer, T. L. & Galloway, D. L. (2005). Impacts of land subsidence caused by withdrawal of underground fluids in the United States. Humans as Geologic Agents, 16, 87.

Hooper, A., Zebker, H., Segall, P. & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31 (23),1-5.https://doi.org/10.1029/2004GL021737.

Hu, B., Zhou, J., Wang, J., Chen, Z., Wang, D. & Xu, S. (2009). Risk assessment of land subsidence at Tianjin coastal area in China. Environmental Earth Sciences, 59 (2), 269-276. https://doi.org/10.1007/s12665-009-0024-6

Itoh, K. (1982). Analysis of the phase unwrapping algorithm. Applied Optics, 21 (14), 2470.

Kaniewski, D., Van Campo, E. & Weiss, H. (2012). Drought is a recurring challenge in the Middle East. Proceedings of the National Academy of Sciences, 109 (10), 3862-3867.

Lanari, R., Lundgren, P., Manzo, M. & Casu, F. (2004). Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophysical Research Letters, 31 (23), 1-5. https://doi.org/10.1029/2004GL021294.

Lanari, R., Casu, F., Manzo, M. & Lundgren, P. (2007). Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sensing of Environment, 109 (1), 20-28.

Lee, S. & Park, I. (2013). Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. Journal of Environmental Management, 127, 166-176. https://doi.org/10.1016/j.jenvman.2013.04.010.

Lyons, S. & Sandwell, D. (2003). Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. Journal of Geophysical Research: Solid Earth, 108 (B1), 11-24. https://doi.org/10.1029/2002JB001831.

Mahmoudpour, M., Khamehchiyan, M., Nikudel, M. R. & Ghassemi, M. R. (2016). Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Engineering Geology, 201, 6-28.

Mardi, A. H., Khaghani, A., MacDonald, A. B., Nguyen, P., Karimi, N., Heidary, P., Karimi, N., Saemian, P., Sehatkashani, S. & Tajrishy, M. (2018). The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Science of The Total Environment, 633, 42-49.

Mason, S., Fletcher, J. K., Haynes, J. M., Franklin, C., Protat, A. & Jakob, C. (2015). A hybrid cloud regime methodology used to evaluate Southern Ocean cloud and shortwave radiation errors in ACCESS. Journal of Climate, 28 (15), 6001-6018.

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K. & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364 (6433), 138.

Massonnet, D. & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36 (4), 441-500.

Motagh, M., Walter, T. R., Sharifi, M. A., Fielding, E., Schenk, A., Anderssohn, J. & Zschau, J. (2008). Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters, 35 (16), L16403. https://doi.org/10.1029/2008GL033814.

Motagh, M., Shamshiri, R., Haghighi, M. H., Wetzel, H.-U., Akbari, B., Nahavandchi, H., Roessner, S. & Arabi, S. (2017). Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering Geology, 218, 134-151.

Pengra, B. (2012). The drying of Iran’s Lake Urmia and its environmental consequences. UNEP-GRID, Sioux Falls, UNEP Global Environmental Alert Service (GEAS).

Pirouzi, A. & Eslami, A. (2017). Ground subsidence in plains around Tehran: site survey, records compilation and analysis. International Journal of Geo-Engineering, 8(1), 30.

Poland, J. F. (1984). Guidebook to studies of land subsidence due to ground-water withdrawal.

Rashki, A., Kaskaoutis, D. G., Goudie, A. S. & Kahn, R. A. (2013). Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran. Science of the Total Environment, 463-464, 552-564.

Raucoules, D., Colesanti, C. & Carnec, C. (2007). Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geoscience, 339 (5), 289-302.

Refice, A., Bovenga, F., Nutricato, R. & Chiaradia, M. T. (2004). Assessment of multitemporal DInSAR stepwise processing. IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 6, 3876-3879.

Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E. & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88 (3), 333-382.

Sandwell, D., Mellors, R., Tong, X., Wei, M. & Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. Eos, Transactions American Geophysical Union, 92 (28), 234.

Soleimani, M., Hamzeh, S. & Papi, R. (2018). Potential assessment of suitable lands for walnut cultivation in Tehran province using fuzzy AHP method. Journal of Soil and Water Conservation (JSWC), 8 (1), 49-72. (In Persian)

Teatini, P., Ferronato, M., Gambolati, G. & Gonella, M. (2006). Groundwater pumping and land subsidence in the Emilia‐Romagna coastland, Italy: Modeling the past occurrence and the future trend. Water Resources Research, 42 (1), 1-19.

Tesauro, M., Berardino, P., Lanari, R., Sansosti, E., Fornaro, G. & Franceschetti, G. (2000). Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry. Geophysical Research Letters, 27 (13), 1961-1964.

Zebker, H. A. & Goldstein, R. M. (1986). Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 91 (B5), 4993-4999.

Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A. & Werner, C. L. (1994). On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research: Solid Earth, 99 (B10), 19617-19634.