شبیه‌سازی عددی اثرات ثانویه اقدامات طرّاحی شده کنترلی جزیره حرارتی شهری در تابستان بر کیفیت هوا در کلان شهر تهران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه علوم غیر زیستی جوّی و اقیانوسی، دانشکده علوم و تکنولوژی دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 گروه فیزیک فضا، مؤسّسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

10.22126/ges.2020.4895.2178

چکیده

جزیرة گرمایی شهری، تفاوت دما بین دمای شهری و روستایی را توصیف می­کند. با توجّه به تأثیرات مورد انتظار بر سلامتی انسان و کیفیت هوا، یافتن راهبردهای کاهش جزایر گرمایشی شهری بسیار مهم است. نوشتار پیش رو شبیه‌سازی‌های عددی در یک بازة تابستانی برای بررسی تأثیر اقدامات طرّاحی­شدة کاهشی جزیرة گرمایی شهری روی کیفیت هوای شهری تهران را ارائه کرده است. از مدل WRF/Chem نسخة شیمی مدل پیش­بینی تحقیقاتی وضع هوا WRF به‌منظور بررسی تأثیر افزایش سطوح با پوشش گیاهی شهری و سطوح بسیار بازتابنده بر غلظت آلاینده‌های اوّلیه (کربن مونوکسید، نیتریک اکسید) و همچنین آلاینده‌های ثانویه (ازن) درون دره شهری استفاده شد. به­منظور درنظرگرفتن ناهمگونی‌های مناطق شهری، یک مدل چندلایه­ای تاج­پوشش شهری با مدل شیمی جفت شد. استفاده از این مدل تاج­پوشش در گسترة وسیع آن به معرّفی چندین کلاس کاربری شهری در مدل شیمی نیاز دارد. کلان­شهر تهران برای شبیه‌سازی آزمایش‌های طرّاحی­شده در تابستان سال 2016 درنظر گرفته شد. اقدامات کاهشی انتخاب­شده در شبیه‌سازی‌ها قادر به کاهش دمای شهری در حدود 1 تا 3 درجة کلوین و غلظت متوسّط روزانة ازن به­اندازة 5% تا 10% شدند؛ همچنین نتایج مدل‌سازی‌ها اثرات ثانویة منفی بر کیفیت هوای شهری که به‌شدّت مربوط به کاهش اختلاط عمودی در لایة مرزی شهری است را ارائه دادند. در نتایج شبیه‌سازی افزایش 1 تا 20 درصدی در آلودگی‌های اوّلیه مشاهده شده است. برخلاف کاهش متوسّط روزانة غلظت ازن، سطوح بسیار بازتابنده به­علّت تابش طول موج کوتاه بازتابی شدید که واکنش‌های فتوشیمیایی را سرعت می‌بخشد، می‌تواند افزایش غلظت ازن حداکثری را تا 9% در ساعات ظهر خورشیدی به­ دنبال داشته باشد.

کلیدواژه‌ها

موضوعات


Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S. & Shankar, U. (1998). Modal aerosol dynamics model for Europe: Development and first applications. Atmospheric environment, 32 (17), 2981-2999.

Akbari, H., Pomerantz, M. & Taha, H.(2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar energy, 70 (3), 295-310.

Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International journal of climatology, 23 (1), 1-26.

Barlow, J. F., Halios, C. H., Lane, S. & Wood, C. R. (2015). Observations of urban boundary layer structure during a strong urban heat island event. Environmental Fluid Mechanics, 15 (1), 373-398.

Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C., Grossman‐Clarke, S., Loridan, T., Manning, K. W., Martilli, A. & Miao, S. (2011). The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31 (2), 273-288.

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D. & Laepple, T. (2010). Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3 (1), 43-67.

Finlayson-Pitts, B. J. & Pitts Jr, J. N. (1999). Chemistry of the upper and lower atmosphere: theory, experiments, and applications. California. Elsevier.

Freitas, S., Longo, K., Alonso, M., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. & Sánchez Gácita, M. (2011). PREP-CHEM-SRC–1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models. Geoscientific Model Development, 4 (2), 419-433.

Gazi, M. A. A. & Mondal, I. (2018). Urban Heat Island and its effect on Dweller of Kolkata Metropolitan area using Geospatial Techniques. International Journal of Computer Sciences and Engineering, 6 (10), 741-753.

Giannaros, T. M., Melas, D., Daglis, I. A., Keramitsoglou, I. & Kourtidis, K. (2013). Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmospheric Environment, 73 (11), 103-111.

Giordano, L., Brunner, D., Flemming, J., Hogrefe, C., Im, U., Bianconi, R., Badia, A., Balzarini, A., Baró, R. & Chemel, C. (2015). Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2. Atmospheric Environment, 115 (7), 371-388.

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C. & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39 (37), 6957-6975.

Guenther, A., Jiang, X., Heald, C., Sakulyanontvittaya, T., Duhl, T., Emmons, L. & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): an extended and updated framework for modeling biogenic emissions.Geoscientific Model Development, 5 (6), 1471-1492.

Hu, X.-M., Nielsen-Gammon, J. W. & Zhang, F. (2010). Evaluation of three planetary boundary layer schemes in the WRF model. Journal of Applied Meteorology and Climatology, 58 (6), 1831-1844.

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baró, R., Bellasio, R., Brunner, D. & Chemel, C. (2015). Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone. Atmospheric Environment, 115 (1), 404-420.

Janjić, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122 (6), 927-945.

Janjic, Z. I. (2001). Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP mesomodel NOAA/NWS/NCEP Off. NOAA, USA.

Klein, P. M., Hu, X.-M. & Xue, M. (2014). Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations. Boundary-layer meteorology 150, 107-130.

Lauwaet, D., De Ridder, K., Saeed, S., Brisson, E., Chatterjee, F., van Lipzig, N. P., Maiheu, B., & Hooyberghs, H. (2016). Assessing the current and future urban heat island of Brussels. Urban Climate, 15 (3), 1-15.

Madronich, S. (1987). Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds. Journal of Geophysical Research: Atmospheres, 92 (8), 9740-9752.

Martilli, A., Clappier, A. & Rotach, M. W. (2002). An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorology, 104 (9), 261-304.

Mellor, G. L. & Yamada,T (1982). Development of a turbulence closure model for geo-physical fluid problems. Rev.Geophys, 20 (4), 851-875.

Mitchell, K. (2005). The community NOAH-LSM–User’s guide public release version 2.7. 1.NOAA, USA.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102 (14), 16663-16682.

Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108 (455), 1-24.

Peng, F., Wong, M., Nichol, J. & Chan, P. (2016). Historical GIS data and changes in urban morphological parameters for the analysis of urban heat islands in Hong Kong. International archives of the photogrammetry, remote sensing and spatial information sciences, XLI-B2 (12), 55-62.

Salamanca, F., Martilli, A. & Yagüe, C. (2012). A numerical study of the Urban Heat Island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. International Journal of Climatology, 32 (15), 2372-2386.

Santamouris, M., Synnefa, A. & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85 (12), 3085-3102.

Sarrat, C., Lemonsu, A., Masson, V. & Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40 (10), 1743-1758.

Schubert, S. & Grossman-Clarke, S. (2013). The Influence of green areas and roof albedos on air temperatures during Extreme Heat Events in Berlin, Germany. Meteorologische Zeitschrift, 22 (2), 131-143.

Schultz, M., Rast, S., van het Bolscher, M., Pulles, T., Brand, R., Pereira, J., Mota, B., Spessa, A., Dalsøren, S. & van Nojie, T. (2007). Emission data sets and methodologies for estimating emissions, RETRO project report D1-6, Hamburg.

Seinfeld, J. H. & Pandis, S. N. (2012). "Atmospheric chemistry and physics: from air pollution to climate change," John Wiley & Sons.New jersey.

Shahbazi, H., Reyhanian, M., Hosseini, V. & Afshin, H. (2016 a). The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an emission inventory approach. Emission control science and technology, 2 (1), 44-56.

Shahmohamadi, P., Cubasch, U., Sodoudi, S. & Che-Ani, A. (2012). Mitigating urban heat island effects in Tehran metropolitan area. Air Pollution—A Comprehensive Perspective; Rijeka, IntechOpen.

Sodoudi, S., Shahmohamadi, P., Vollack, K., Cubasch, U. & Che-Ani, A. (2014). Mitigating the urban heat island effect in megacity Tehran. Advances in Meteorology, 2014 (3).1-20.

Stull, R. B. (1988). Similarity theory. In “An Introduction to Boundary Layer Meteorology”. Springer.Vancouver.

Taha, H. (1997 a). Modeling the impacts of large-scale albedo changes on ozone air quality in the South Coast Air Basin. Atmospheric Environment, 31 (11), 1667-1676.

Taha, H. (1997 b). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and buildings, 25 (2), 99-103.

Taha, H. (2008). Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmospheric Environment, 42 (38), 8795-8809.

Takebayashi, H. & Moriyama, M. (2007). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and Environment, 42 (8), 2971-2979.

USGS (2006). The National Land Cover Database. Accessed at: http://landcover.usgs.gov/ usgslandcover.php; 05/25/2014.

Velasco, E., Márquez, C., Bueno, E., Bernabé, R., Sánchez, A., Fentanes, O., Wöhrnschimmel, H., Cárdenas, B., Kamilla, A. & Wakamatsu, S. (2007). Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City. Atmospheric Chemistry and Physics Discussions, 8 (12), 12751-12779.

Wesely, M. & Lesht, B. (1989). Comparison of RADM dry deposition algorithms with a site-specific method for inferring dry deposition. Water, Air, and Soil Pollution, 44 (3), 273-293.

Wood, C., Järvi, L., Kouznetsov, R., Nordbo, A., Joffre, S., Drebs, A., Vihma, T., Hirsikko, A., Suomi, I. & Fortelius, C. (2013). An overview of the urban boundary layer atmosphere network in helsinki. Bulletin of the American Meteorological Society, 94 (11), 1675-1690.

Yarwood, G., S. Rao, M. Yocke, & G.Z. Whitten. (2005). Updates to the Carbon Bond Mechanism: CB05, US EPA Final Report, Report to the U.S. Environmental Protection Agency, RT-04006758 (13), 161 pp.

Zakšek, K. & Oštir, K. (2012). Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sensing of Environment, 117 (2), 114-124.

Zhang, J. & Rao, S. T. (1999). The role of vertical mixing in the temporal evolution of ground-level ozone concentrations. Journal of Applied Meteorology, 38 (12), 1674-1691.

Zhou, J., Chen, Y., Zhang, X. & Zhan, W. (2013). Modelling the diurnal variations of urban heat islands with multi-source satellite data. International journal of remote sensing, 34 (21), 7568-7588.