آلشیخ، علیاصغر؛ قراگوزلو، علیرضا؛ سجادیان، مهیار (1391). بهرهگیری از شبکة عصبی بهمنظور استفاده در فرایند مدیریت ریسک زیستمحیطی ناشی از آلودگی هوای منتج از ترافیک در کلانشهر تهران.جغرافیایی چشمانداز زاگرس، 4 (14)، 25-38.
اجتهادی، مرجان (1386). بررسی آلودگی هوای شهری ناشی از سامانة حملونقل با تأکید بر ذرّات معلّق و ارائة راهکارهای مدیریتی (مطالعة موردی، تهران). دهمین همایش ملّی بهداشت محیط، همدان: دانشگاه علوم پزشکی همدان.
حسینی شفیع، روجا؛ علیمحمدی، عباس؛ قاسمیان یزدی، محمدحسن (1395). ارزیابی آثار موجک پایه و تعداد سطوح تجزیه جهت تخمین نقشة تغییرات با استفاده از الگوریتم موجک. سنجشازدور و GIS ایران، 8 (2)، 17-34.
خبری، زهرا؛ موسویان ندوشن، نرجس السادات؛ نژاد کورکی، فرهاد؛ منصوری، نبیا... (1392). تأثیر مدل رقومی ارتفاعی در مدلسازی آلودگی هوا با استفاده از ائرمود (AERMOD).سنجشازدور و سامانة اطّلاعات جغرافیایی در منابع طبیعی، 4 (4)، 25-33.
رفیعپور، مهرداد؛ آلشیخ، علیاصغر؛ علیمحمدی سراب، عباس؛ صادقی نیارکی، ابوالقاسم (1392). مدلسازی مکانی غلظت منواکسید کربن در تهران با استفاده از رگرسیون چندمتغیّره و شبکههای عصبی. همایش ملّی ژئوماتیک، 20. تهران: دانشگاه آزاد اسلامی.
شرعیپور، زهرا (1388). بررسی تغییرات فصلی و روزانة آلایندههای هوا و ارتباط آن با پارامترهای هواشناسی. مجلّة فیزیک زمین و فضا، 35 (2)، 119-137.
شرکت کنترل کیفیت هوای تهران (1395). گزارش سالانة کیفیت هوای تهران در سال 1394. تهران: شهرداری تهران.
عبودی، محمدرضا؛ کرمی، جلال؛ شمسالدینی، علی (1394). مدلسازی خطّی و غیر خطّی آلایندههای هوای شهر تهران با استفاده از خصیصههای محیطی و ترافیک. اوّلین کنفرانس ملّی مهندسی فنّاوری اطّلاعات مکانی. تهران: دانشگاه صنعتی خواجه نصیر طوسی.
متکان، علیاکبر؛ شکیبا، علیرضا؛ پورعلی، سید حسین؛ بهارلو، ایمان (1388). تعیین تغییرات مکانی و زمانی آلودگیهای منواکسید کربن و ذرّات معلّق با استفاده از تکنیکهای GIS در شهر تهران.سنجشازدور و GIS ایران، 1(1)، 57-72.
References
Aboodi, M., Karami, J. & Shamsoddini, A. (2015). Linear and nonlinear modeling of air pollutants in Tehran using environmental and traffic characteristics. In: First National Conference on Spatial Information Technology Engineering. Tehran: K. N. Toosi University of Technology. (In Persian)
Agirre-Basurko, E., Ibarra-Berastegi, G. & Madariaga, I. (2006). Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environmental Modelling & Software, 21 (4), 430-446.
Alesheikh, A., Qara Gozlu, A. & Sajjadian, M. (2012). Use of neural network for use in environmental risk management process due to air pollution caused by traffic in Tehran metropolis. Zagros Landscape Geography and Planning, 4 (14), 25-38.(In Persian)
Alimissis, A., Philippopoulos, K., Tzanis, C. G. & Deligiorgi, D. (2018). Spatial estimation of urban air pollution with the use of artificial neural network models. Atmospheric environment, 191, 205-213.
Artis, D. A. & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12 (4), 313-329.
Chen, G., Knibbs, L. D., Zhang, W., Li, S., Cao, W., Guo, J., ... & Hamm, N. A. S. (2018). Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environmental pollution, 233, 1086-1094.
Chelani, A. B., Rao, C. C., Phadke, K. M. & Hasan, M. Z. (2002). Prediction of sulphur dioxide concentration using artificial neural networks. Environmental Modelling & Software, 17 (2), 159-166.
Coulibaly, P., Dibike, Y. B. & Anctil, F. (2005). Downscaling precipitation and temperature with temporal neural networks. Journal of Hydrometeorology, 6 (4), 483-496.
Ejtehadi, M. (2007). Investigation of urban air pollution caused by transportation system with emphasis on suspended particles and presentation of management solutions (Case study, Tehran). In: 10th National Conference on Environmental Health. Hamadan: Hamadan University of Medical Sciences. (In Persian)
Elangasinghe, M. A., Singhal, N., Dirks, K. N. & Salmond, J. A. (2014). Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmospheric Pollution Research, 5 (4), 696-708.
Gardner, M. W. & Dorling, S. R. (1999). Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33 (5), 709-719.
Grgurić, S., Krizan, J., Gasparac, G., Antonic, O., Spiric, Z.; Mamouri, R. E., Christodoulou, A.; Nisantzi, A., Agapiou, A., Themistocleous, K., Fedra, K., Panayiotou, C. & Hadjimitsis, D. (2014). Relationship between MODIS based Aerosol Optical Depth and PM10 over Croatia. Central European Journal of Geosciences. 6 (1), 2-16.
Hewitt, C. N. (1991). Spatial variations in nitrogen dioxide concentrations in an urban area. Atmospheric Environment. Part B. Urban Atmosphere, 25 (3), 429-434.
Hosseini Shafi, R., Ali Mohammadi, A. & Qasemian Yazdi, M. (2016). Evaluation of base wavelet effects and number of decomposition levels to estimate change map using wavelet algorithm. Iranian Remote sensing & GIS, 8 (2), 17-34. (In Persian)
Hrust, L., Klaić, Z. B., Križan, J., Antonić, O. & Hercog, P. (2009). Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmospheric Environment, 43 (35), 5588-5596.
Karatzas, K. D. & Kaltsatos, S. (2007). Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece. Simulation Modelling Practice and Theory, 15 (10), 1310-1319.
Khabari, Z., Mousavian Nodoshan, N., Nejad Korki, F. & Mansoori, N. (2013). The effect of digital elevation model on air pollution modeling using AERMOD. Remote sensing and GIS in natural resources, 4 (4), 25-33.(In Persian)
Kharytonov, M. M., Khlopova, V. M., Stankevich, S. A. & Titarenko, O. V. (2013). Remote and ground-based sensing of air polluted by nitrogen dioxide in the Dnepropetrovsk region (Ukraine). In Disposal of Dangerous Chemicals in Urban Areas and Mega Cities (pp. 291-298). Springer, Dordrecht.
Knelson, J. H. & Lee, R. E. (1977). Oxides of nitrogen in the atmosphere: origin, fate and public health implications. Ambio, 6 (2/3), 126-130.
Koller, D. & Sahami, M. (1996). Toward optimal feature selection. Stanford InfoLab.
Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., ... & Cawley, G. (2003). Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment, 37 (32), 4539-4550.
Mao, L., Qiu, Y., Kusano, C. & Xu, X. (2012). Predicting regional space–time variation of PM 2.5 with land-use regression model and MODIS data. Environmental Science and Pollution Research, 19 (1), 128-138.
Martin, R. V. (2008). Satellite remote sensing of surface air quality. Atmospheric environment, 42 (34), 7823-7843.
Matkan, A., Shakiba, A., Pour Ali, S. & Baharlou, I. (2009). Determination of spatial and temporal variations of carbon monoxide and particulate pollutants using GIS techniques in Tehran. Iranian Remote sensing & GIS, 1 (1), 57-72. (In Persian)
McKendry, I. G. (2002). Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2. 5) forecasting. Journal of the Air & Waste Management Association, 52 (9), 1096-1101.
Montero-Lorenzo, J. M., Fernández-Avilés, G., Mondéjar-Jiménez, J. & Vargas-Vargas, M. (2013). A spatio-temporal geostatistical approach to predicting pollution levels: The case of mono-nitrogen oxides in Madrid. Computers, Environment and Urban Systems, 37, 95-106.
Nisantzi, A., Hadjimitsis, D. G., Akylas, E., Agapiou, A., Panayiotou, M., Michaelides, S., & Paronis, D. (2013). Study of air pollution with the use of modis data, lidar and sun photometers in Cyprus. In Advances in Meteorology, Climatology and Atmospheric Physics (pp. 1133-1139). Springer, Berlin, Heidelberg.
Perez, P. & Trier, A. (2001). Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile. Atmospheric Environment, 35 (10), 1783-1789.
Pfeiffer, H., Baumbach, G., Sarachaga-Ruiz, L., Kleanthous, S., Poulida, O. & Beyaz, E. (2009). Neural modelling of the spatial distribution of air pollutants. Atmospheric Environment, 43 (20), 3289-3297.
Rafiepour, M., Alesheikh, A., Ali Mohammadi Sarab, A. & Sadeghi Niaraki, A. (2013). Spatial modeling of carbon monoxide concentration in Tehran using multivariate regression and neural networks. In: National Geomatics Conference. Tehran: Islamic Azad University. (In Persian)
Shamsoddini, A., Aboodi, M. R. & Karami, J. (2017). Tehran air pollutants prediction based on random forest feature selection method. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 483-488.
Shamsoddini, A., Raval, S. & Taplin, R. (2014). Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 75-79.
Sharie pour, Z. (2009). Investigation of seasonal and daily changes of air pollutants and its relationship with meteorological parameters. Journal of Earth and Space Physics, 35 (2), 119-137. (In Persian)
Shi, J. P. & Harrison, R. M. (1997). Regression modelling of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 31 (24), 4081-4094.
Snyder, W. C., Wan, Z., Zhang, Y. & Feng, Y. Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19 (14), 2753-2774.
Siwek, K. & Osowski, S. (2012). Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors. Engineering Applications of Artificial Intelligence, 25 (6), 1246-1258.
Tehran Air Quality Control Company (2016). Annual Report of Tehran Air Quality In 1394. Tehran: Municipality of Tehran. (In Persian)
Tomczak, M. (1998). Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis, 2 (2), 18-30.
Zhang, H., Wu, W. & Yao, M. (2012 a). Boundedness and convergence of batch back-propagation algorithm with penalty for feedforward neural networks. Neurocomputing, 89, 141-146.
Zhang, Y., Yiyun, C., Qing, D. & Jiang, P. (2012 b). Study on urban heat island effect based on Normalized Difference Vegetated Index: A case study of Wuhan City. Procedia environmental sciences, 13, 574-581.