بارانی پسیان، وحید, پوراکرمی، محمد؛ فتوحی مهربانی، باقر؛ پوراکرمی، سعید (1396). تحلیل روند خشکشدن دریاچة ارومیه و مهمترین تأثیرات آن بر سکونتگاههای پیرامونی. پژوهشهای روستایی، 8 (3)، 438-453.
کاظمپور چورسی، سیما؛ عرفانیان، مهدی؛ عبادی نهاری، زهرا (1398). ارزیابی دادههای ماهوارهای MODIS و TRMM در پایش خشکسالی حوضة آبریز دریاچة ارومیه. جغرافیا و برنامه ریزی محیطی، 30 (2)، 17-34.
References
Abadi, B. (2020). Farmers’ intention to participate in environmental nongovernmental organizations: evidence of northwest Iran. Social and Economic Development, 56, 1-22.
Aburas, M. M., Ho, Y. M., Ramli, M. F. & Ash’aari, Z. H. (2016). The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation, 52, 380-389.
Alsharif, A. A. & Pradhan, B. (2014). Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. the Indian Society of Remote Sensing, 42 (1), 149-163.
Alsharif, A. A. & Pradhan, B. (2016). Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models. Applied Spatial Analysis and Policy, 9 (2), 213-231.
Arsanjani, J. J., Kainz, W. & Mousivand, A. J. (2011). Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. International Journal of Image and Data Fusion, 2 (4), 329-345.
Bakhshianlamouki, E., Masia, S., Karimi, P., van der Zaag, P. & Sušnik, J. (2020). A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran. Science of the Total Environment, 708, 134874.
Barani Pesyan, V.; Porakrami, M; Fotouhi Mehrbani. B. & Porkaram, S. (2017). The Investigation of Lake Urmia Drying Trend and Its Important Consequence on the Surrounding Settlements. Rural Research, 8 (3),438-453 (In Persian)
Barredo, J. I., Kasanko, M., McCormick, N. & Lavalle, C. (2003). Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64 (3), 145-160.
Belete, M., Deng, J., Abubakar, G. A., Teshome, M., Wang, K., Woldetsadik, M., ... & Gudo, A. (2020). Partitioning the Impacts of Land Use/Land Cover change and Climate Variability on Water Supply over the Source Region of Blue Nile Basin. Land Degradation & Development. 52, 152-168.
Biro, K., Pradhan, B., Buchroithner, M. & Makeschin, F. (2013). Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degradation & Development, 24 (1), 90-102.
Clarke, K. C., Hoppen, S. & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and design, 24 (2), 247-261.
Dadhich, P. N. & Hanaoka, S. (2011). Spatio-temporal urban growth modeling of Jaipur, India. Journal of Urban Technology, 18 (3), 45-65.
Etemadi, H., Smoak, J. M. & Karami, J. (2018). Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environmental Earth Sciences, 77 (5), 208.
Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58 (3), 257-266.
Gashaw, T., Bantider, A. & Mahari, A. (2014). Evaluations of land use/land cover changes and land degradation in Dera District, Ethiopia: GIS and remote sensing based analysis. International Journal of Scientific Research in Environmental Sciences, 2 (6), 199.
Gashaw, T., Tulu, T., Argaw, M. & Worqlul, A. W. (2017). Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environmental Systems Research, 6(1), 17.
Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T. & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222 (20-22), 3761-3772.
Halmy, M. W. A., Gessler, P. E., Hicke, J. A. & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63 (2), 101-112.
Hassanzadeh, E., Zarghami, M. & Hassanzadeh, Y. (2012). Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resources Management, 26 (1), 129-145.
Hassen, E. E. & Assen, M. (2018). Land use/cover dynamics and its drivers in Gelda catchment, Lake Tana watershed, Ethiopia. Environmental Systems Research, 6 (1), 4.
He, C., Okada, N., Zhang, Q., Shi, P. & Zhang, J. (2006). Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Applied Geography, 26 (3-4), 323-345.
Huang, Y., Yang, B., Wang, M., Liu, B. & Yang, X. (2020). Analysis of the future land cover change in Beijing using CA–Markov chain model. Environmental Earth Sciences, 79 (2), 60.
Islam, K., Rahman, M. F. & Jashimuddin, M. (2018). Modeling land use change using cellular automata and artificial neural network: the case of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators, 88 (4), 439-453.
Kazempour Choursi, S., Erfanian, M. & Ebadi Nehari, Z. (2019). Evaluation of MODIS and TRMM Satellite Data for Drought Monitoring in the Urmia Lake Basin. Geography and Environmental Planning, 30 (2), 17-34(In Persian)
Kumar, K. S., Kumari, K. P. & Bhaskar, P. U. (2016). Application of Markov Chain & Cellular Automata based model for prediction of urban transitions. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)12 (4), 4007-4014.
Kvalseth, T. O. (1991). A coefficient of agreement for nominal scales: An asymmetric version of Kappa. Educational and psychological measurement, 51 (1), 95-101.
Mansour, S., Al-Belushi, M. & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy, 91, 104414.
Monserud, R. A. (1990). Methods for comparing global vegetation maps.
Moradi, M., Asadi, S. Shahbaz, H. (2017). A brief report of Urmia Lake Restoration Program. Available from the ULRP at: http://www.ulrp.ir/wp-content/uploads/2019/03/Annual-Reoprt-2018.pdf
Mosammam, H. M., Nia, J. T., Khani, H., Teymouri, A. & Kazemi, M. (2017). Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. The Egyptian Journal of Remote Sensing and Space Science, 20 (1), 103-116.
Nasehi, S. & Salehi, E. (2019). Simulation of land cover changes in urban area using CA-MARKOV model (case study: zone 2 in Tehran, Iran). Modeling Earth Systems and Environment, 5 (1), 193-202.
Othman, A. A., Al-Saady, Y. I., Al-Khafaji, A. K. & Gloaguen, R. (2014). Environmental change detection in the central part of Iraq using remote sensing data and GIS. Arabian Journal of Geosciences 7 (3), 1017-1028.
Pradhan, B. & Suleiman, Z. (2009). Landcover mapping and spectral analysis using multi-sensor satellite data fusion techniques: case study in Tioman Island, Malaysia. Geomatics, 3 (2), 71-78.
Prestele, R., Alexander, P., Rounsevell, M. D., Arneth, A., Calvin, K., Doelman, J. ... & Havlik, P. (2016). Hotspots of uncertainty in land‐use and land‐cover change projections: a global‐scale model comparison. Global Change Biology, 22 (12), 3967-3983.
Rawat, J. S. & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18 (1), 77-84.
Riebsame, W. E., Meyer, W. B., & Turner, B. L. (1994). Modeling land use and cover as part of global environmental change. Climatic change, 28 (1-2), 45-64.
Roodposhti, M. S., Aryal, J. & Bryan, B. A. (2019). A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change. Environmental modelling & software, 112 (1), 70-81.
Shu, Bangrong, Shouhong Zhu, Yi Qu, Honghui Zhang, Xin Li & Gerrit, J. (2020). "Modelling multi-regional urban growth with multilevel logistic cellular automata." Computers, Environment and Urban Systems. 80 (2), 101-114.
Surabuddin Mondal, M., Sharma, N., Kappas, M. & Garg, P. K. (2013). Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra River basin using Geoinformatic techniques. Geocarto International, 28 (7), 632-656.
Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, S. & Sneeuw, N. (2015). A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sensing of Environment, 156 (2), 349-360.
Tucker, C. J., Fung, I. Y., Keeling, C. D. & Gammon, R. H. (1986). Relationship between atmospheric CO 2 variations and a satellite-derived vegetation index. Nature, 319 (6), 195-199.
Turner, M. G. & Ruscher, C. L. (1988). Changes in landscape patterns in Georgia, USA. Landscape ecology, 1 (4), 241-251.
Wakode, H. B., Baier, K., Jha, R. & Azzam, R. (2014). Analysis of urban growth using Landsat TM/ETM data and GIS—a case study of Hyderabad, India. Arabian Journal of Geosciences, 7 (1), 109-121.
Wang, S. Q., Zheng, X. Q. & Zang, X. B. (2012). Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environmental Sciences, 13 (6), 1238-1245.
Youssef, A. M., Pradhan, B. & Tarabees, E. (2011). Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: contribution from the analytic hierarchy process. Arabian Journal of Geosciences, 4 (3-4), 463-473.
Zha, Y., Gao, J. & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24 (3), 583-594.