Evaluation the Distribution of Effective Factors on Habitat Diversity in Kermanshah Protected Areas

Document Type : Research Paper

Authors

1 Department of Environmental Sciences, Faculty of Natural Resources and Environmental Sciences, University of Malayer, Hamedan, Iran

2 Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran

Abstract

Destruction and habitat fragmentation are considered as the most challenging issues of biodiversity and establishment of protected areas is one of preventive methods to reduce biodiversity. Therefore, there are different criteria to choose it. Kermanshah province has covered different habitats due to its diverse ecologic condition. The current study aims to evaluate and compare the distribution of effective indices on habitat diversity in protected areas of Kermanshah province. In this regard, Surrogates such as altitude, slope, aspect, roughness  of altitude, Shortwave Infrared Water Stress Index (SIWSI), Compound Topographic Index (CTI), normalized different vegetation index (NDVI), vegetation type and Roughness of NDVI have been used as Biodiversity surrogates. Since the protected areas should be indicative samples of their surroundings, all the mentioned variables were prepared for Kermanshah province area and then all maps for slope and cover type were divided into 10 classes based on Jenks method. Shannon-Wiener (H), Simpson (D) and Macintosh (D) indices were used for diversity analysis, and Pielou (J') and Macintosh (E) indices were used for richness analysis. The results show that in terms of diversity indices for slope, CTI, altitude, NDVI, roughness  of altitude, Roughness of NDVI, SIWSI and slope ,Hashilan no hunting area, Ghalajeh protected area, Nava Koh no hunting area, Dalakhani and Amroleh no hunting area, Bistoon protected area and Bistoon Wildlife Refuge have the highest diversity indices, respectively. The slope and CTI variables share most similarity in terms of distribution of classes among the protected areas, and the vegetation type variable has had the least similarity among the protected areas. Among the hunting-banned and protected areas, the highest diversity exists in the Amroleh and Dalakhani and Bistoon protected area, respectively.The results of this study can be useful in choosing the correct complementary protected logic.
Extended Abstract
1-Introduction
Since the 1960s, the rapid growth of habitat degradation and the resulting threats to biodiversity for different reasons have raised concerns for biodiversity survivors among environmentalists. Hence, the only way to protect natural and pristine habitats is to create protected areas. Substitutes are criteria used to investigate biodiversity and are considered as ecosystem characteristics. Surrogates are based on two general types of physical predictors including climate, soil, unit / system / land type and true Surrogates or biological.
The management of protected areas as a tool for the protection of fragile areas around the world is based on the assumption that these areas have values that require protection.
One of the important issues regarding the selection of protected areas and parks is how to construct such areas and prioritize them for protection; so that maximum diversity can be maintained in parallel with the integration of new areas into the network of protected areas. Therefore, it is necessary to measure the biodiversity of these areas to allow comparisons.
Quantification of physical and biological Surrogates in protected areas is one way to obtain information about these areas. If the mentioned alternatives are quantified by using GIS and remote sensing and then their spatial distribution is compared using diversity measurement indicators, the decision-making to compare and select these areas will be done more efficiently.
2-Materials and Methods
This study was conducted in Kermanshah province in which there are 11 areas under the management of the Environmental Protection Organization, including 6 hunting-banned areas (Gharaviz, Novakuh, Amroleh, Dalakhani, Hashilan and Zele Zard), 4 protected areas (Bisotun, Ghalajeh, Badr and paryshan and Bozin and marakhil) and 1 Bisotun wildlife refuge (Bisotun wildlife refuge). Applying previous studies, substitutes that represent habitat diversity were identified including height, slope, aspect, Compound Topographic Index, elevation roughness, soil moisture index (SIWSI), normalized different vegetation index (NDVI), vegetation density roughness and vegetation type.
All of these substitutes were classified into 10 classes using the reclassification command using the Jenks algorithm or natural break. In this algorithm, the pixels that are inside a group have the most similarity. The direction map was prepared in 9 classes and the vegetation type map was prepared in 24 different types. All data with 100×100 cell dimensions were prepared and analyzed. The boundaries of the areas were placed on the classified maps and then conducting by cutting. To calculate the diversity indices, two components of number and type are needed. In this study, the type was considered equal to the substitution classes of diversity and the number was considered equal to total pixels in each class.
Shannon-Wiener (H), Simpson (D) and Macintosh (D) indices were used in order to investigate diversity. The uniformity was also calculated using the Pielou (J) and Macintosh (E) indices. Diversity and richness indices were calculated in SDR-IV software
3-Results and Discussion
In this study, some Surrogates such as vegetation density and soil surface moisture were extracted and used from satellite images by relevant indicators, which shows the ability of this field to quantifying Surrogates; In addition, it can compensate for the lack of data from areas where vegetation and animal status information is not available. Therefore, the approach of this study is less challenged by the lack of field information. Based on the results of comparison of diversity indices, in the habitat index for Aspect, Hashilan hunting-banned area has the highest diversity so that the values of Shannon-Wiener, Simpson and Macintosh indices for this region were calculated as 2.09, 8.02 and 0.66, respectively.
The surface moisture index (SIWSI) for the Ghalajeh protected area with values of 1.97, 6.22 and 60, for the Shannon-Wiener index, Simpson and Macintosh were at its highest value. According to the results, the values of the mentioned indices for the altitude factor are the highest in Novakoh hunting-banned area and Bisotun wildlife refuge, respectively.
4-Conclusion
Variation Surrogates resulting from topographic parameters have more variety among protected areas which means there are significant changes in the topographic component among the areas. Using the approach of this study makes the proposed zones for joining the network of protected areas be identified easier which is based on identifying the differences and similarities that exist between the diversity Surrogates.
The use of GIS and remote sensing can act as a supporter to the decision and fill the information gap. Therefore, there is a correlation between the development of the mentioned sections and the efficiency of the approach used in this study, which can improve the method used in this study with the help of diversity indices.

Keywords

Main Subjects


اسفنده، سرور؛ کابلی، محمد؛ اسلامی، لیلا (1396). استفاده از الگوریتم بهینه‌سازی مذاب­سازی شبیه‌سازی‌شده برای اولویت‌بندی سیستماتیک مناطق حفاظت‌شده در استان البرز ایران. محیط‌زیست جانوری، 9 (1)، 105-122.
باعقیده، محمد؛ انتظاری، علیرضا؛ بابایی، یزدان؛ عباس­نیا، محسن (1392). شناسایی نواحی بهینة آب­وهوایی برای احیای جنگل‌های بلوط (مطالعة موردی استان کرمانشاه). جغرافیا و پایداری محیط، 3 (1)، 121-142.
برومند، مهری؛ قاجار سپانلو، مهدی؛ بهمنیار، محمدعلی (1393). اثر تغییر کاربری اراضی بر خصوصیات فیزیکی و شیمیایی خاک (مطالعة موردی سمسکندة ساری). پژوهش‌نامة مدیریت آبخیز، 5 (9)، 78-94.
بهرامی­نژاد، میثم؛ رایگانی، بهزاد؛ نظامی بلوچی، باقر؛ جهانی، علی (1397). ارزیابی هشدار اوّلیه، برای تأمین امنیّت اکولوژیکی مناطق حفاظت‌شده (مطالعة موردی: منطقة حفاظت‌شدة درمیان، شرق ایران). جغرافیا و مخاطرات محیطی، 7 (2)، 75-94.
جعفری، علی؛ یاوری، احمدرضا؛ یار علی، نبی‌الله؛ ولی­پور، قدیر (1389). ارزیابی معرّف­بودن شبکة مناطق حفاظت‌شده با تأکید بر تنوّع زیستی گیاهی (مطالعة موردی: استان چهارمحال بختیاری). محیط‌شناسی، 36 (54)، 77-88.
خانمحمدی، فاطمه؛ همابی، مهدی؛ نوروزی، علی‌اکبر (1393). برآورد رطوبت خاک به­کمک شاخص‌های پوشش گیاهی و دمای سطح خاک و شاخص نرمال­شدة رطوبت با استفاده از تصاویر MODIS. نشریة حفاظت از منابع آب‌وخاک، 4 (2)، 37-45.
خلیل­پور، مصیب؛ جلیلوند، حمید (1396). اثر آتش‌سوزی بر پوشش گیاهی و برخی خصوصیات فیزیکی و شیمیایی خاک منطقة قلات گناوه در استان کهگیلویه و بویر‌احمد. بوم‌شناسی کاربردی، 6 (4)، 17-28.
ریاضی، برهان؛ جعفری، محمدعلی (1398). تدوین طرح برای مدیریت منطقة حفاظت‌شدة باشگل (در استان قزوین) به‌روش روی­هم­گذاری. علوم و تکنولوژی محیط‌زیست، 21 (3)، 83-95.
سعیدی، سپیده؛ میرکریمی، سیدحامد (1392). سنجش عملکرد، ضرورتی برای مدیریت پایدار مناطق حفاظت‌شده. نشریة حفاظت و بهره‌برداری از منابع طبیعی، 2 (2)، 71-90.
شمس اسفندآباد، بهمن؛ کابلی، محمد (1396). توسعة شبکة مناطقی حفاظتی با به‌کارگیری رویکرد برنامه‌ریزی سیستماتیک در ایران. محیط‌زیست جانوری، 10 (4)، 147-162.
عباسی، سارا؛ پیله‌ور، بابک؛ حسینی، سیدمحسن (1393). تنوّع گونه‌های گیاهی در غرب منطقة حفاظت‌شدة اشترانکوه لرستان. علوم و تکنولوژی محیط‌زیست، 16 (3) 155-164.
فلاحتی، سامان (1397). بررسی وضعیّت زیست­گاه خرس قهوه‌ای (Ursus arctos) ازمنظر سیمای سرزمین در منطقة حفاظت‌شدة قلاجه. پایان‌نامة کارشناسی­ارشد محیط‌زیست. دانشگاه ملایر.
فلاحتی، سامان؛ شایسته، کامران؛ کرمی، پیمان (1398). کمّی­سازی اثر عوامل محیطی بر توزیع خرس قهوه‌ای (Ursusarctos) در جنگل‌های بلوط زاگرس (مطالعة موردی منطقه حفاظت‌شدة قلاجه). محیط‌زیست جانوری، 11 (4)، 1-8.
کرمی، پیمان (1393). مدل‌سازی مطلوبیت زیست­گاه آهوی ایرانی (Gazella subgutturosa subgutturosa) در منطقة شکارممنوع قراویز به­روش تجزیه و تحلیل آشیان اکولوژیک (ENFA). پایان‌نامة کارشناسی­ارشد محیط‌زیست. دانشگاه هرمزگان. بندرعباس.
کرمی، پیمان؛ اسماعیلی، مینا (1398). اهمّیت شناخت پتانسیل‌های فیزیکی و زیستی مناطق حفاظت‌شده درراستای توسعة پایدار مطالعة موردی: استان همدان. سوّمین همایش ملّی راهکارهای دستیابی به توسعة پایدار در علوم کشاورزی و منابع طبیعی ایران، تهران، ایران.
کرمی، پیمان؛ شایسته، کامران؛ رستگار پویانی، نصرالله (1398). بارزسازی نقش ارتفاع در جابه‌جایی گونه‌های حیات‌وحش مناطق کوهستانی با تأکید بر مناطق حفاظت‌شده: مطالعة موردی استان کرمانشاه. محیط‌زیست جانوری، 12 (2)، 21-30.
کوه­بنانی، حمیدرضا؛ یزدانی، محمدرضا (1397). پهنه‌بندی رطوبت خاک سطحی با استفاده از تصاویر لندست 8 (مطالعة موردی: حومة شهر سمنان). جغرافیا و پایدار محیط، 8 (3)، 65-77.
گشتاسب، حمید؛ عطایی، فرهاد؛ جهانی، علی؛ صوفی، محمد؛ احمدی، ناهید (1395). تأثیر پوشش گیاهی در انتخاب زیست­گاه شوکا در منطقة حفاظت‌شدة بوزین و مرخیل. محیط‌زیست طبیعی، 69 (3)، 803-820.
لطفی، علی؛ قدیریان، امید؛ اصغری، زهرا (1396). ارزیابی اثربخشی مناطق حفاظت‌شدة استان اصفهان در کاهش اثرات خشک‌سالی و مداخلات انسانی. مهندسی اکوسیستم بیابان، 14 (3)، 69-78.
مارابی، هاجر؛ رحیمی، حمید؛ عزمی، آئیژ (1396). اثر ویژگی‌های ژئوهیدرولوژی بر پراکنش و الگوی توزیع نقاط روستایی استان کرمانشاه. فضای جغرافیایی، 19 (65)، 91-105.
مرادی، سهراب؛ محمودی، صالح؛ شیخی ئیلانلو، صیاد (1395). زیست­گاه‌های جنگلی مناسب برای حفاظت از سنجاب ایرانی (Sciurus anomalus pallescens) در غرب استان کرمانشاه. محیط‌زیست جانوری، 8 (2)، 33-40.
ملکیان، منصوره؛ همامی، محمدرضا (1391). مبانی زیست‌شناسی حفاظت. چاپ اول. مشهد: جهاد دانشگاهی.
مهدوی، علی؛ حیدری، مهدی؛ اسحاقی راد، جواد (1389). بررسی تنوّع زیستی و غنای گونه‌های گیاهی در ارتباط با عوامل فیزیوگرافی و فیزیکی - شیمیایی خاک در منطقة حفاظت‌شدة کبیرکوه. تحقیقات جنگل و صنوبر ایران، 18 (3)، 426-436.
References
Abasi, S., Pilevar, B. & Hosseini, S. (2014). Study of Plant Biodiversity in West of Oshtorankooh region, Lorestan, Journal of Environmental Science and Technology, 16 (3), 155-164. (In Persian)
Albuquerque, F. & Beier, P. (2018). Improving the use of environmental diversity as a surrogate for species representation. Ecology and evolution, 8 (2), 852-858.
Baaghideh, M., Entezari, A., Babaei, Y. & Abbasinia, M. (2013). Identifying the Optimal Climatic Zones for the Restoration of Oak Forests in Kermanshah Province. Geography and Sustainability of Environment, 3 (1), 121-142. (In Persian)
Bahraminejad, M., Rayegani, B., Nezami, B. & Jahani, A. (2018). Presenting an Early Warning System to Supply the Protected Areas with Ecological Security (Case Study: Darmiyan Protected Area, East of Iran). Geography and Environmental Hazards, 7 (2), 75-94. (In Persian)
Barton, P.S., Westgate, M. J., Foster, C. N., Cuddington, K., Hastings, A., O'Loughlin, L. S., Sato, C. F., Willig, M. R. & Lindenmayer, D. B. (2020). Using ecological niche theory to avoid uninformative biodiversity surrogates. Ecological Indicators, 108, 105692.
Beier, P. & de Albuquerque, F. S. (2015). Environmental diversity as a surrogate for species representation. Conservation Biology, 29 (5), 1401-1410.
Bhola, N., Juffe‐Bignoli, D., Burguess, N., Sandwith, T. & Kingston, N. (2016). Protected planet report 2016. How protected areas contribute to achieving global targets for biodiversity. UNEP-WCMC and IUCN: Cambridge UK and Gland, Switzerland.
Boroumand, M., Ghajar, S.M. & Bahmanyar, M.A. (2014). The Effect of Land Use Change on Some of the Physical and Chemical Properties of Soil (Case Study: Semeskande Area of Sari). Watershed Management Research, 5 (9), 78-94. (In Persian)
Carlson, M., Browne, D. & Callaghan, C. (2019). Application of land-use simulation to protected area selection for efficient avoidance of biodiversity loss in Canada’s western boreal region. Land use policy, 82, 821-831.
Chemura, A., Mahoya, C., Chidoko, P. & Kutywayo, D. (2014). Effect of soil moisture deficit stress on biomass accumulation of four coffee (Coffea arabica) varieties in Zimbabwe. International Scholarly Research Notices, 125, 1-10.
Dalerum, F., Somers, M.J., Kunkel, K. E. & Cameron, E.Z. (2008). The potential for large carnivores to act as biodiversity surrogates in southern Africa. Biodiversity and Conservation, 17 (12), 2939-2949.
Engelbrecht, I., Robertson, M., Stoltz, M. & Joubert, J. W. (2016). Reconsidering environmental diversity (ED) as a biodiversity surrogacy strategy. Biological Conservation, 197, 171-179.
Esfandeh, S., Kaboli, M. & Eslami, L. (2017). Simulated annealing algorithm as a tool for systematic prioritization of protected area in Alborz province, Iran, Animal Environment, 9 (1), 105-122. (In Persian)
Falahati, S .(2018). Investigation of the Status of Brown Bear (Ursus arctos) Habitat from the Perspective of the Landscape in Ghalajeh Protected Area. Master of Science Thesis, Faculty of Natural Resources and Environment. Malayer University. (In Persian)
Falahati, S., Shayesteh, K. & Karami, P. (2019). Quantifying the Effect of Environmental Factors on the Distribution of Brown Bears (Ursus arctos) in Zagros Oak (Quercus) Forests (Case Study: Ghalajeh Protected Area). Animal Environment, 11 (4), 1-8. (In Persian)
Fensholt, R. & Sandholt, I. (2003). Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in a semiarid environment. Remote Sensing of Environment, 87 (1), 111-121.
Funnell, D. & Parish, R. (2005). Mountain environments and communities. Routledge.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27.
Goshtasb, H., Ataei, F., Jahani, A., Sofi, M. & ahmadi, N. (2016). The influence of vegetation characteristics on roe deer habitat selection in Bozin and Markheil Protected Area. Natural Environment, 69 (3), 803-820. (In Persian)
Grantham, H. S., Pressey, R. L., Wells, J. A. & Beattie, A. J. (2010). Effectiveness of biodiversity surrogates for conservation planning: different measures of effectiveness generate a kaleidoscope of variation. PLoS One, 5 (7), e11430.
Habtemariam, B.T. & Fang, Q. (2016). Zoning for a multiple-use marine protected area using spatial multi-criteria analysis: The case of the Sheik Seid Marine National Park in Eritrea. Marine Policy, 63, 135-143.
Harrington, F. A. (1977). A guide to the mammals of Iran. Tehran: Department of the Environment.
Hodgson, J. A., Thomas, C. D., Wintle, B. A. & Moilanen, A. (2009). Climate change, connectivity and conservation decision making: back to basics. Applied Ecology, 46 (5), 964-969.
Hortal, J., Triantis, K.A., Meiri, S., Thebault, E. & Sfenthourakis, S. (2009). Island species richness increases with habitat diversity. American Natrulist, 174 (6), 205-217.
Ikin, K., Yong, D. L. & Lindenmayer, D. B. (2016). Effectiveness of woodland birds as taxonomic surrogates in conservation planning for biodiversity on farms. Biological Conservation, 204, 411-416.
Jafari, A., Yavari, A., Yarali, N. & Valipour, G. (2010). Representativeness Assessment of Protected Areas Network Emphasizing Plant Diversity in Charmahal & Bakhtiari, Iran. Environmental Studies, 36 (54), 77-88. (In Persian)
Kadmon, R. & Allouche, O. (2007). Integrating the effects of area, isolation, and habitat heterogeneity on species diversity: A unification of island biogeography and niche theory. American Natrulist, 170 (3), 443-454.
Karami, P. (2014). Habitat Suitability Modeling of Gazella Subgutturosa Subgutturosa in Qaraviz No Hunting Area by Ecological Nich Factor Analysis. Master of Science of Environmental Sciences. College of Agriculture and Natural Resources. University of Hormozgan. (In Persian)
Karami. P. & Esmaeili, M. (2019). The Importance of Recognizing the Physical and Biological Potentials of Protected Areas for Sustainable Development Case Study: Hamadan Province. Paper presented at the 3 National Conference on Sustainable Development in Iranian Agricultural Sciences and Natural Resources. Tehran. Iran. (In Persian)
Karami, P., Shayesteh, K. & Rastegar-Pouyani, N. (2020). Highlighting altitude role in the movement of wildlife species of mountain areas with emphasis on protected areas: Case Study of Kermanshah Province. Animal Environment, 12 (2), 21-30. (In Persian)
Khalilpour, M. & Jlilvand, H. (2018). The Fire Impact on Vegetation and Physicochemical Properties of Soil in Ghalat Ganaveh Area of Kohgiluyeh and Boyer Ahmad Province. Iranian Journal of Applied Ecology, 6 (4), 17-29. (In Persian)
Khanmohammadi, F., Homaee, M. & Noroozi, A. (2015). Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Soil and Water Resources Conservation, 4 (2), 37-45. (In Persian)
Koohbanani, H. & Yazdani, M. (2018). Mapping the Moisture of Surface Soil Using Landsat 8 Imagery (Case study: Suburb of Semnan City). Geography and Sustainability of Environment, 8 (3), 65-77. (In Persian)
Leverington, F., Hockings, M. & Costa, K. L. (2008). Management effectiveness evaluation in protected areas: a global study. University of Brisbane, Australia: World Commission on Protected Areas.
Li, X., Lao, C., Liu, Y., Liu, X., Chen, Y., Li, S. & He, Z. (2013). Early warning of illegal development for protected areas by integrating cellular automata with neural networks. Environmental Management, 130, 106-116.
Lotfi, A., Ghadirian, O. & Asghari, Z. (2017). Evaluating the effectiveness of Isfahan province protected areas against climate change and human intervention. Desert Ecosystem Engineering Journal, 6 (14), 69-78. (In Persian)
Mahdavi, A., Heydari, M. & Eshaghi Rad, J. (2010). Investigation on biodiversity and richness of plant species in relation to physiography and physico-chemical properties of soil in Kabirkoh protected area. Iranian Journal of Forest and Poplar Research, 18 (3), 426-436. (In Persian)
Malekian, M. & Hemami, M. (2012). Fundamentals of Conservation Biology. Mashhad: Jahad Daneshgahi of Mashhad (JDM) Press. (In Persian)
Marabi, H., Rahimi, H. & Azmi, A. (2019). Effect Characteristics of Geo-Hydrology on the distribution and patterns Rural Point in Kermanshah Province. Geographic Space, 19 (65), 91-105. (In Persian)
Martinez, J. M. G., de Castro-Pardo, M., Pérez-Rodríguez, F. & Martín, J. M. M. (2019). Innovation and multi-level knowledge transfer using a multi-criteria decision making method for the planning of protected areas. Innovation & Knowledge, 4 (4), 256-261.
Moradi, S., Mahmoudi, S. & Sheykhi Ilanloo, S. (2016). Suitable Forest Habitats for Protection of Iranian Squirrel (Sciurus anomalus pallescens) in West Kermanshah Province. Animal Environment, 8 (2), 33-40. (In Persian)
Muñoz-Reinoso, J. C. (2004). Diversity of maritime juniper woodlands. Forest Ecology and Management, 192 (2-3), 267-276.
Peri, P. L., Lasagno, R. G., Pastur, G. M., Atkinson, R., Thomas, E. & Ladd, B. (2019). Soil carbon is a useful surrogate for conservation planning in developing nations. Scientific Reports, 9 (1), 1-6.
Pressey, R. L .(2004). Conservation planning and biodiversity: assembling the best data for the job. Conservation Biology, 18 (6), 1677-1681.
Riazi, B. & Jafari, M. (1970). Developing a plan for management of Bashgol protected area (Qazvin) using the overlay method. Environmental Science and Technology, 21 (3), 80-95. (In Persian)
Saeidi, S. & mirkarimi, S. (2014). Performance Measurement: A Necessity for Constant Management of Protected Areas. Conservation and Utilization of Natural Resources, 2 (2), 71-90. (In Persian)
Sarkar, S. (2005). Biodiversity and environmental philosophy: An introduction. Cambridge University Press.
Seaby, R. & Henderson, P. (2006). Species diversity and richness. (Version 4). Pisces Conservation Ltd., Lymington, England.
Shams esfand abad, B. & Kaboli, M. (2018). Development of the conservation area network using systematic conservation planning approach in Iran, Journal of Animal Environment, 10 (4), 147-162. (In Persian)
Sharifi, N., Danehkar, A., Etemad, V. & Mahmoudi, B. (2011). Identification and Prioritization of Criteria Used for Selecting Protected Areas in Forest Ecosystems Case Study: Iran's Hyrcanian Forests. Environment and Natural Resources Research, 1 (1), 189.
Sun, L., Sun, R., Li, X., Liang, S. & Zhang, R. (2012). Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information. Agricultural and Forest Meteorology, 166, 175-187.
Syahputra, F., Muslim, A. M., Talaat, W. I. A. W. & Irsalinda, N. (2019). Analytical Hierarchy Process (AHP) in selecting suitable Marine Protected Area (MPA) site in Pulo Breuh (Breuh Island), Indonesia. Physics: Conference Series, 1373, 1-6.
Timonet, D. S. & Abecasis, D. (2020). An integrated approach for the design of a marine protected area network applied to mainland Portugal. Ocean & Coastal Management, 184, 1-9.
Tukiainen, H., Bailey, J. J., Field, R., Kangas, K. & Hjort, J. (2017). Combining geodiversity with climate and topography to account for threatened species richness. Conservation Biology, 31 (2), 364-375.
USGS (US Geological Survey). (2014). Global 30 Arc-Second Elevation (GTOPO30). Retrieved from https://lta.cr.usgs.gov/GTOPO30. Accessed September 2014.
Vergilio, M., Fonseca, C., Calado, H., Borges, P. A., Elias, R. B., Gabriel, R. & Cardoso, P. (2016). Assessing the efficiency of protected areas to represent biodiversity: a small island case study–Corrigendum. Environmental Conservation, 43 (4), 417-417.
Wessels, K.J., Freitag, S.V. & Van Jaarsveld, A.S. (1999). The use of land facets as biodiversity surrogates during reserve selection at a local scale. Biological conservation, 89(1), 21-38.
Zhang, Y. B., Wang, Y. Z., Phillips, N., Ma, K. P., Li, J. S. & Wang, W. (2017). Integrated maps of biodiversity in the Qinling Mountains of China for expanding protected areas. Biological Conservation, 210, 64-71.
Ziaie, H. (2008). A field guide to mammals of Iran. 2nd edn. Wildlife Center Publication, Iran.