Mapping the Moisture of Surface Soil Using Landsat 8 Imagery (Case study: Suburb of Semnan City)

Document Type : Research Paper

Authors

1 Ph.D. Student of Combat Desertification, University of Semnan, Semnan, Iran

2 Associate Professor of Combat Desertification, University of Semnan, Semnan, Iran

Abstract

Monitoring soil surface moisture, as a crucial factor in water and energy cycles, is of great importance in water and soil resource management. This important factor varies dramatically in time and space due to variability in soil characteristics, topography, vegetation, and dynamic nature of the climate. Any change in soil moisture can have an immediate effect on runoff, soil erosion, and plant productivity. Soil moisture is considered as a decisive factor in plant growth. Moreover, a decrease in soil moisture results in an increase in the dust of desert regions. Remote sensing methods can provide continuous soil moisture information on a large scale with acceptable accuracy. In the current study, applying data from Landsat 8 satellite image, different soil surface moisture estimation methods were studied. In order to assess the precision of each method, 80 samples of volumetric soil surface moisture were taken from the vicinity of Semnan province on the exact date the satellite passed over the region.  Some of the applied indices in the study are NDVI, NDTI, NDMI, PSMI, Surface Temperature, and SMSWIR index. SMSWIR index, with a correlation coefficient of 0.88 and R2 of 0.61 was considered as the suitable index for soil moisture zonation in arid and desert areas. Therefore, SMSWIR can be an appropriate indicator for soil surface moisture in arid and semi-arid regions. SMSWIR , NDTI and NDMI indices could be considered as appropriate indicators for soil surface moisture in desert regions with poor vegetation. In the next step, using multivariate regression models, we prepared a soil moisture model using the studied indices. The findings of this study illustrated that Enter regression model has higher accuracy in surface soil moisture mapping.
Extended Abstract
1-Introduction
Monitoring soil surface moisture, as a crucial factor in water and energy cycles, is of great importance in water and soil resource management. Many soil properties such as stability, compressibility, permeability, and ability to transfer are function of moisture content in the soil. This variable is used to calculate the water balance of the area, Plant water requirement, and desertification studies. This important factor varies dramatically in time and space due to variability in soil characteristics, topography, vegetation, and dynamic nature of the climate. Any change in soil moisture can have an immediate effect on runoff, soil erosion, and plant productivity. Soil moisture is considered as a decisive factor in plant growth. Moreover, a decrease in soil moisture results in an increase in dust in desert regions. Continuous measurement of soil moisture is very costly and time-consuming, and the spatial range of measurement is generally limited. Remote sensing methods can provide continuous soil moisture information on a large scale with acceptable accuracy.
2-Materials and Methods
In the current study, applying data from Landsat 8 satellite, different soil surface moisture estimation methods were studied. In order to assess the precision of each method, real time field data were also collected and used. Due to the fact that the soil surface moisture is severely affected by daily evapotranspiration, wind, and airflows, 80 samples of volumetric soil surface moisture were taken from the vicinity of Semnan city on the exact date the satellite passed over the region. Measurement of moisture in the laboratory was carried out by direct method. Some of the applied indices in the study are Normalized differential vegetation index, normalized differential tillage Index, normalized differential moisture index, perpendicular soil moisture index, surface temperature, and SMSWIR index. Calculating the Pearson coefficient and the coefficient of determination of each of the above indices, the most correlated indices were used to measure soil moisture content. In the next step, the soil moisture estimation functions were calculated using the correlated indices by three methods of Partial least squares regression, Stepwise and Enter method. Considering the high correlation coefficient of the Enter method and the low RMSE compared to the other two methods, regression model of Enter can be used to model the soil moisture zonation in the studied area.
3-Results and Discussion
The results of the study revealed that in desert regions with low vegetation, using short-wavelength infrared bands showed a higher level of correlation with the field data. Among the proposed methods, surface temperature did not show a high correlation with data on moisture. This indicates that thermal bands are affected by other factors besides soil moisture. Thus, perpendicular soil moisture index cannot offer acceptable accuracy as it relies heavily on surface temperature. SMSWIR index, with correlation coefficient of 0.78, presents a slight difference compared to normalized differential tillage indices and normalized differential vegetation index. This index’s square regression value was 0.61, and the root-mean-square error for the regression model results and actual data were estimated to be 3.69. The root-mean-square error for the regression model resulting from normalized differential tillage index, normalized differential moisture index and normalized differential vegetation index and the actual data was 3.77 and 4, respectively.  Therefore, Soil moisture of Short-wavelength infrared bands (SMswir) and normalized differential tillage index and normalized differential moisture index could be an appropriate indicator for soil surface moisture in desert regions with poor vegetation.
In the next step, using normalized differential tillage indices, normalized differential moisture index, normalized differential vegetation index, short-wavelength infrared moisture index and surface temperature index, regression model of these variables were prepared. Regarding the low root mean square error and the high coefficient of explanation of the Enter model among other multivariate regression methods, this model has a good accuracy for soil surface moisture zonation at 5% level.
4-Conclusion
Our study illustrated that the short-wavelength infrared bands of Landsat 8 show more sensitivity to soil moisture changes than near-infrared bands. In this paper, the efficiency of reflective and thermal bands of Landsat 8 for monitoring of surface soil moisture was confirmed. The research was done in a desert region in Semnan. As a result, the reliability of proposed methods in regions with higher vegetation and forests must be evaluated again.
 
 

Keywords


آذرنیوند، حسین؛ جعفری، محمد؛ مقدم، محمدرضا، جلیلی، عادل؛ زارع چاهوکی، محمدعلی (1381) بررسی تأثیر خصوصیات خاک و تغییرات ارتفاع بر پراکنش دو گونه درمنه (مطالعة موردی: مراتع مناطق وردآورد، گرمسار و سمنان)، منابع طبیعی ایران، 56 (1 و 2)، صص. 100-93.
بابازاده، حسین، نوروزی اقدم، الناز، عقیقی، حسین، شمس­نیا، سید امیر، خدادادی دهکردی، داوود (1391) تخمین رطوبت لایة سطحی خاک اراضی مرتعی مناطق خشک و نیمه‌خشک با استفاده از شاخص دما و پوشش گیاهی (مطالعة موردی: استان خراسان)، تحقیقاتمرتعوبیابانایران، 19 (1)، صص. 132-120.
بابائیان، ابراهیم؛ همایی، مهدی؛ نوروزی، علی­اکبر (1392) برآورد رطوبت خاک سطحی با استفاده از تصاویر رادار ENVISAT/ASAR، پژوهش آب در کشاورزی، 27 (4)، صص. 622-611.
خانمحمدی، فاطمه؛ همایی، مهدی؛ نوروزی، علی­اکبر (1393) برآورد رطوبت خاک به کمک شاخص‌های پوشش گیاهی و دمای سطح خاک و شاخص نرمال شده رطوبت با استفاده از تصاویر MODIS، حفاظت منابع آب‌وخاک، 4 (2)، صص. 45-37.
دادرسی سبزوار، ابوالقاسم؛ آخوندعلی، علی­محمد؛ رادمنش، فریدون؛ نوروزی، علی­اکبر (1396) تخمین توزیع مکانی رطوبت سطحی خاک در مناطق خشک و نیمه­خشک با استفاده از داده­های دورسنجی، تحقیقات مرتع و بیابان، 24 (2)، صص. 382-370.
زارع چاهوکی، محمدعلی؛ خلاصی اهوازی، لیلا؛ آذرنیوند، حسین (1392) مدل­سازی پراکنش گونه­های گیاهی براساس عوامل خاک و توپوگرافی با استفاده از روش رگرسیون لوجستیک در مراتع شرق سمنان، مرتع و آبخیزداری، 67 (1)، صص. 59-45.
فراستی، معصومه؛ رحمانی، مهسا (1395) ارزیابی دقّت دستگاه انعکاس­سنجی حوزه زمانی در خاک‌های رسی و شنی شور، دانش آب‌وخاک، 26 (2)، صص. 52-43.
فرح­بخشی، ملودی؛ علیجانی، بهلول؛ فتاحی، ابراهیم (1394) تحلیل سینوپتیکی مخاطرة گردوغبار (10تا 12 مرداد 1392) ایران، دانش مخاطرات، 2 (1)، صص. 20-5.
فیاض، محمد؛ عامری، حسین؛ یزدان­شناس، حبیب؛ یگانه، حسن (1394) بررسی ارزش رجحانی گونه­های مرتعی برای شتر در مراتع ییلاقی و قشلاقی سمنان طی سه سال متوالی، پژوهش­های گیاهی (مجلّة زیست­شناسی ایران)، 28 (4)، صص. 802-794.
کوه­بنانی، حمیدرضا؛ دشتی امیرآباد، جمال؛ نیکو، شیما؛ تایا، علی (1396) پهنه­بندی شدّت بیابان­زایی با استفاده از رویکرد منطق فازی (مطالعة موردی: دیهوک طبس)، پژوهش­های فرسایش محیطی، 25 (1)، صص. 49-35.
کوه­بنانی، حمیدرضا؛ یزدانی، محمدرضا (1397) واسنجی مدل سبال به­منظور اندازه­گیری تبخیر و تعرّق از روی سنجندة LDCM، مرتع و آبخیزداری، 71 (1)، صص. 283-269.
نامدار خجسته، داوود؛ شرفا، مهدی؛ اسکندری، ذبیح­الله؛ فاضلی سنگانی، محمود (1391) تأثیر میزان رس و شوری خاک در رطوبت حجمی اندازه­گیری­شده با انعکاس­سنجی زمانی، پژوهش‌های خاک، 25 (2)، صص. 112-103.
Adegok, J. O., Carleton, A. M. (2002) Relations between Soil Moisture and Satellite Vegetation Indices in the U.S. Corn Belt, American Meteorological Society, 3, pp. 395-405.
Amani, M., Parsian, S., Mirmazloumi, S., Aienh, O. (2016) Two New Soil Moisture Indices Based on the NIR-Red Triangle Space Oflandsat-8 Data, International Journal of Applied Earth Observation and Geoinformation, 50, pp. 176-186.
Bandara, R., Walker, J. P.,  Ruediger, Ch. (2014) Towards Soil Property Retrieval from Space:Proof of Concept Using in Situ Observations, Hydrology, 512, pp. 27-38.
Fabre, S., Briottet, X., lesaignoux, A. (2015) Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4-2.5 μm Domain, Sensors, 15, pp. 3262-3281.
Farrar, T. J., Nicholson, S. E., Lare, A. R. (1994) The Influence of Soil Type on the Relationships between NDVI, Rainfall, and Soil Moisture in Semiarid Botswana. II. NDVI Response to Soil Moisture, Remote Sensing of Environment, 50, pp. 121-133.
Gao, Z., Xu, X., Wang, J., Yang, H., Huang, W., Feng, H. (2013) A Method of Estimating Soil Moisture Based on the Linear Decomposition of Mixture Pixels, Math Comput Modell, 58 (3), pp. 606-613.
Ghulam, A., Qin, Q., Teyip, T., Li, Z. L. (2007) Modified Perpendicular Drought Index (MPDI): a Real-Time Drought Monitoring Method. ISPRS J, Photogramm Remote Sens, 62 (2), pp. 150-164.
Jiang, L., Islam, S. A. (2001) Estimation of Surface Evaporation Map Over Southern Great Plains Using Remote Sensing Data, Water Resources Research, 37, pp. 329-340.
Li, B., Ti, C., Zhao, Y., Yan, X. (2016) Estimating Soil Moisture with Landsat Data and Its Application in Extracting the Spatial Distribution of Winter Flooded Paddies, Remote Sensing, 8, pp. 38-52
Li, Z., Tan, D. (2013) The Second Modified Perpendicular Drought Index (MPDI1): A Combined Drought Monitoring Method with Soil Moisture and Vegetation Index, Indian Society Remote Sensing, 41 (4), pp. 873-881.
Lobell, D. B., Gregory P., Asner, G. P. (2002) Moisture Effects on Soil Reflectance, SOIL SCI, SOC. AM. J, 66, pp. 112-127.
Milfred, C. J.,  Kiefer, R. W. (1976) Analysis of Soil Variability with Repetitive Aerial Photography, America Journal of Soil Science Society, 40 (4), pp. 553-557.
Moran, M. S., Clarke, T. R., Inoue, Y., Vidal, A. (1994) Estimating Crop Water Deficit Using the Relation between Surface-Air Temperature and Spectral Vegetation Index, Remote Sens Environ, (49), pp. 246-263.
Pengxin, W., Zhengming, W., Jianya, G., Xiaowen, L., Jindi, W. (2003) Advances in Drought Monitoring by Using Remotely Sensed Normalized Difference Vegetation Index and Land Surface Temperature Products. Adv, Earth Science, 18 (4), pp. 527-533.
Petropoulos, G. P., Ireland, G., Barrett, B. (2015) Surface Soil Moisture Retrievals from Remote Sensing: Current Status, Products & Future Trends, Physics and Chemistry of the Earth, 83 (84), pp. 36-56.
Qasim, S., Gul, S., Hussain Shah, M., Hussayn, F., Ahmad, S., Islam, M., Rehman, G., Yaqoob, M., Qasim Shah, S. (2017) Influence of Grazing Exclosure on Vegetation Biomass and Soil Quality, International Soil and Water Conservation Research, 5 (1), pp. 62-68.
Rahimzadeh, B. P., Berg, A. A., Champagne, C., Omasa, K. (2013) Estimation of Soil Moisture Using Optical/Thermal Infrared Remote Sensing in the Canadian Prairies, ISPRS Journal of Photogrammetry and Remote Sensing, 83, pp. 94-103.
Sandholt, I., Rasmussen, K., Andersen, J (2002) A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Soil Moisture Status, Remote Sensing of Environment, 79, pp. 213-224.
Shafian, S., Maas, S. (2015 A) Improvement of the Trapezoid Method Using Raw Landsat Image Digital Count Data for Soil Moisture Estimation in the Texas (USA) High Plains, Sensors, 15 (1), pp. 1925-1944.
Shafian, S., Maas, S. J. (2015 B) Index of Soil Moisture Using Raw Landsat Image Digital Count Data in Texas High Plains, Remote Sensing, 7(3),2352-2372.
Sharifi, F., Safarpour, Sh., Ayoubzadeh, S. A., Vakilpour, J. (2004) An investigation of factors affecting runoff generationi in arid and semi-arid area using simulation and rainfall runoff data. Natural Resources, 57 (1), pp. 33-45.
Sun, L., Sun, R., Li, X., Liang, S ., Zhang, R. (2012) Monitoring Surface Soil Moisture Status Based on Remotely Sensed Surface Temperature and Vegetation Index Information, Agricultural and Forest Meteorology, 166-167, pp. 175-187.
Van Rooy, M. P. (1965) A Rainfall Anomaly Index Independent of Time and Space, Notos, 14 (43), pp. 6-13.
Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., Van Der Kruk, C., Bogena, H., Weihermüller, H., Herbst, M., Martinez, G and vanderborght, J. (2014) On the Spatio-Temporal Dynamics of Soil Moisture at the Field Scale, Hydrology, 516, pp. 76-96.
Wang, J. (2000) Relations between Productivity, Climate, and Normalized Difference Vegetation Index in the central Great Plains, Lawrence: University of Kansas (PhD dissertation). Advisor: Alexander, H.M.
Xing, G., Zhao, X., Xiong, Z., Yan, X., Xu, H., Xie, Y., Shi, S. (2009) Nitrous Oxide Emission from Paddy Fields in China, Acta Ecologica Sinica, 29 (1), pp. 45-50.
Xu, B. C., Gichuki, P., Shan, L., Li, F. M. (2006) Aboveground Biomass Production and Soil Water Dynamics of Four Leguminous Forages in Semiarid Region, Northwest China, South African Journal of Botany, 72 (4), pp. 507-516.
Zhang, J., Zhou, Z., Yao, F., Yang, L., Hao, C. (2015) Validating the Modified Perpendicular Drought Index in the North China Region Using in Situ Soil Moisture Measurement, IEEE Geoscience Remote Sensing Letters, 12 (3), pp. 542-546.