Modelling the Trend of Zagros Forest Degradation using Logistic Regression (Case study: Chardavol Forest of Ilam province)

Document Type : Research Paper

Authors

1 Department of Forest Sciences, Faculty of Agriculture, Ilam University, Iran

2 Dept. Forest Sciences, Faculty of Agriculture, Ilam University, Ilam, Iran

3 Department of Entrepreneurship and rural development, Faculty of Agriculture, Ilam University

4 Department of Forest Sciences, Faculty of Agriculture, Ilam University, Iran.

Abstract

Since land use change and forest degradation represent a direct and interrelated relationship between human and their natural environment, understanding the social and biophysical processes that cause land use change and degradation can play an important role in policing and implementing preventive measures and decisions. In order to investigate the forest cover degradation trends of Chardavol county in Ilam province, satellite images of MMS and OLI Landsat sensors for the years 1987 and 2014 and regression logistic modeling methods were used. To investigate the causes of degradation, forest cover changes map and physiographic (slope, aspect, altitude) and human (distance to road and distance to residential areas) variables were integrated into regression logistic model. The results of study showed that about 10332.82 ha of forest cover has been reduced in Holeilan division of Chardavol County during 27 years. This amount of forest cover reduction includes 382.68 ha annually. In addition, the results of modelling showed that aspect variable with the highest coefficient (0.7267) is probably the most biophysical factor affecting on deforestation in the study area. After that, slope and altitude variables probably affected deforestation, respectively. Distance to villages and road variables in study area are both inversely related to the amount of forest degradation. Assessment of regression model fitted with ROC (0.8493) and Pseudo-R2 (0.2248) indices indicated the ability of the model to describe the changes and to identify the areas prone to change. According to the annual rate of deforestation in the area, which is more than global average, in the absence of proactive planning by provincial and national planners, perhaps, we will see the desertification phenomenon in Chardavoul County in the near future.
Extended Abstract
1-Introduction
Zagros forests have long been the habitat of the inhabitants and nomads in these areas and have been exposed to many damage. The issue of degradation and reduction of Zagros forests has emerged as one of the crises in recent years. Destruction and land use /land cove changes represent a variety of social and environmental factors. Since land use change and forest degradation represent a direct and interrelated relationship between human and their natural environment, understanding the social and biophysical processes that cause land use change and degradation can play an important role in policing and implementing preventive measures and decisions.
2-Materials and Methods
Satellite images of MMS and OLI Landsat sensors for the years 1987 and 2014 and regression logistic modeling methods were used in order to investigate the forest cover degradation trends of Chardavol County in Ilam province. Image method with 46 ground control points was used to do the geometry correction of the images of 2014. In order to do the geometry correction of images of 1987, after correction of the image of 2014, the image to image method with 42 ground control points was used. The supervised classification method of support vector machines was used to classify the satellite images of the respective years. Conducting investigations in the studied area as well as reviewing past research in similar areas to identify the important factors of forest degradation in the region, it turned out that five factors (elevation to sea level, aspect, slope, distance to village, and distance to road) are more important and effective in destroying forests in the region. Then, forest cover changes map and physiographic (slope, aspect, altitude) and human (distance to road and distance to residential areas) variables were integrated into regression logistic model.
3-Results and Discussion
The results of the supervised classification in the studied area were compared and statistically analyzed for classification accuracy using general and Kappa reliability coefficients, as the images of years 1997 and 2014 had a total accuracy of 86.11 and 86.39%, respectively. The results of study showed that about 10332.82 ha of forest cover has been reduced in Chardavol County during 27 years which indicates an annual decline of 382.68 hectares or 0.37 percent of the initial level of forests in the area. This amount of forest cover reduction includes 382.68 ha annually. In addition, the results of modelling showed that aspect variable with the highest coefficient (0.7267) is probably the most biophysical factor affecting deforestation in study area. After that, slope and altitude variables probably affected deforestation, respectively. Distance to villages and road variables in study area are both inversely related to the amount of forest degradation. That means the greater the distance from the road and the village, the less the decline in forest cover or forest destruction is. The results of degradation in different aspects indicate that the flat areas in the area have the highest damages (4292.96 ha) and the west aspects had the least amount of destruction (278.42 ha). Assessment of regression model fitted with ROC (0.8493) and Pseudo-R2 (0.2248) indices indicated the ability of the model to describe the changes and to identify the areas prone to change. To further improve the model, the more variables such as socio-economic data (population, average income level and welfare of residential areas, number of livestock in residential areas) climate data and so on can be included in the prediction model.
4-Conclusion
Considering the comparison of the results of this study and the factors affecting the process of forest degradation in this region, further studies needed to investigate the factors affecting forest degradation in each region. Because the factors affecting forest degradation are often specific to each region and are different from other areas, even if the factors are common, their degree of importance will vary from region to area. According to the annual rate of deforestation in the area, which is more than global average, in the absence of proactive planning by provincial and national planners, perhaps, we will see the desertification phenomenon in Chardavoul county in the near future. Since spatial modeling is a good tool for better understanding of the causes of land use/land cover changes, it is hoped that the results of this research will be considered in future planning that is relevant to land-use /cover change.

Keywords


امینی، محمد؛ شتایی جویباری، شعبان؛ معیری محمدهادی؛ غضنفری، هدایت (1387) بررسی امکان مدل‌سازی احتمال تخریب جنگل‌های غرب کشور با استفاده از GIS و RS (مطالعة موردی: جنگل آرمرده بانه)، تحقیقات جنگل و صنوبر ایران، 16 (3)، صص. 443-431.
باقری، رضا؛ شتایی جویباری، شعبان (1389) مدل‌سازی کاهش گسترة جنگل با استفاده از رگرسیون لجستیک (مطالعة موردی: حوزة آبخیز چهل‌چای استان گلستان)، جنگل ایران، 2 (3)، صص. 252-243.
رنجبر، ابوالفضل؛ سعدی مسگری، محمد (1391) بررسی مدل رگرسیون لجستیک در تخریب جنگل‌های ارسباران با استفاده از سنجش از دور در محیط سیستم اطّلاعات جغرافیایی (مطالعة موردی: جنگل‌های ارسباران)، جغرافیا و برنامه‌ریزی، 6 (43)، صص. 171-155.
عزیزی قلاتی، سارا؛ رنگزن، کاظم؛ سدیدی، جواد؛ حیدریان، پیمان؛ تقی‌زاده، ایوب (1395) پیش‌بینی روند تغییرات مکانی کاربری اراضی با استفاده از مدل زنجیرة مارکوف- CA (مطالعة موردی: منطقة کوهمره سرخی استان فارس، سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی (‌کاربرد سنجش از دور و GIS در علوم منابع طبیعی)، 7 (1)، صص. 71-59.
فرج‌الهی، اصغر؛ عسگری، حمیدرضا؛ اونق، مجید؛ محبوبی، محمدرضا؛ سلمان ماهینی، عبدالرسول (1394) پایش و پیش‌بینی روند تغییرات مکانی و زمانی کاربری/ پوشش اراضی (مطالعة موردی: منطقة مراوه‌تپّه، گلستان)، سنجش از دور و سامانة اطّلاعات جغرافیایی در منابع طبیعی (کاربرد سنجش از دور و GIS در علوم منابع طبیعی)، 6 (4)، صص. 14-1.
کامیاب، حمیدرضا؛ سلمان ماهینی، عبدالرسول؛ حسینی، سید محسن؛ غلامعلی‌فرد، مهدی (1389) اتّخاذ رهیافت اطّلاعات محور با کاربرد روش رگرسیون لجستیک برای مدل‌سازی توسعة شهری گرگان، محیط‌شناسی، 36 (54)، صص. 96-89.
مهدوی، علی؛ فلاح شمسی، سید رشید (1391) نقشة تغییرات سطح جنگل با استفاده از عکس‌های هوایی و تصاویر LISSIII ماهواره IRS (مطالعة موردی: شهرستان ایلام)، پژوهش‌های علوم و فناوری چوب و جنگل، 19 (1)، صص. 99-77.
میرزایی‌زاده، وحید (1393) مدل‌سازی مکانی - زمانی تغییرات پوشش جنگلی با استفاده از تصاویر ماهواره‌ای (مطالعة موردی: جنگل‌های شهرستان ملکشاهی - استان ایلام)،پایان‌نامة کارشناسی ارشد،استاد راهنما: علی مهدوی، گروه علوم جنگل، دانشکدة کشاورزی، دانشگاه ایلام، ایلام.
میرزایی‌زاده، وحید؛ مهدوی، علی؛ کرمشاهی، عبدالعلی؛ جعفرزاده، علی‌اکبر (1395). بررسی الگوی مکانی تغییرات پوشش جنگلی با استفاده از رگرسیون لجستیک در شهرستان ملکشاهی، پژوهش‌های علوم و فناوری چوب و جنگل، 23 (3)، صص. 68-45.
میرعلیزاده فرد، رضا؛ علی‌بخشی، مریم (1395) پایش و پیش‌بینی روند تغییرات کاربری اراضی با استفاده از مدل زنجیرة مارکوف و مدل‌ساز تغییر کاربری اراضی (مطالعة موردی: دشت برتش دهلران، ایلام)، سنجش از دور و سامانة اطّلاعات جغرافیایی در منابع طبیعی (کاربرد سنجش از دور و GIS در علوم منابع طبیعی)، 7 (2)، صص. 45-33.
Aspinall, R. J., Hill, M. J. (2008) Land Use Change: Science, Policy and Management, Edited by: Richard J. Aspinall, Michael J. Hill, CRC Press, Taylor & Francis Group.
Berger, P. A., Bolte, J. P. (2004) Evaluating the Impact of Policy Options on Agricultural Landscapes: An Alternative-Futures Approach, Ecological Applications, 14 (2), pp. 342-354.
Echeverria, C., Coomes, D. A., Hall, M., Newton, A. C. (2007) Spatially Explicit Models to Analyze Forest Loss and Fragmentation between 1976 and 2020 in Southern Chile, Ecological Modelling, 212 (3-4), pp. 439-449.
Gul, A. M., Orucu, K., Oznur, K. (2006)An Approach for Recreation Suitability Analysis to Recreation Planning in Golchuk Nature Park, Environmental Management, 37 (5), pp. 606-625.
Hyandye, C., GeoffreyMandara, C., Safari, J. (2015) GIS and Logit Regression Model Applications in Land Use/ Land Cover Change and Distribution in Usangu Catchment, American Journal of Remote Sensing, 3 (1), pp. 6-16.
Jafarzadeh, A. A., Arekhi, S. (2012) Analyze and Predict Processes of Deforestation Using Logistic Regression and GIS (A Case Study of Northern Ilam Forest, Ilam Province, Iran), Elixir Agriculture, 44, pp. 7104-7111.
JoorabianShooshtari, S. H., Hosseini, S. M., EsmailiSari, A., Gholamalifard, M. (2012) Monitoring Land Cover Change, Degradation, and Restoration of the Hyrcanian Forests in Northern Iran (1977-2010), International Journal of Environmental Sciences, 3 (3), pp. 1038-1056.
Loza, A. V. (2004) Spatial Logistic Model for Tropical Forest Conversion: A Case Study of Carrasco Province (1986-2002), Bolivia, M.Sc. Thesis (Supervisor: Dr. H. A. M. J. van Gils), International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands.
Mahapatra, K., Kant, S. (2005) Tropical Deforestation: A Multinomial Logistic Model and Some Country-Specific Policy Prescriptions, Forest Policy and Economics, 7 (1), pp. 1-24.
Mas, J. F., Puig, H., Palacio, J. L., Sosa-Lopel, A. (2004) Modeling Deforestation Using GIS and Artificial Neural Networks, Environmental Modeling & Software, 19 (5), pp. 461-471.
Miranda-Argon, L., Trevino-Garza, J., Jimenez-Perez, J., Aguirre Colderon, O. A., Gonzalez Tagle, M. A. (2012) Modelling Susceptibility to Deforestation of Remaining Ecosystems in North Central Mexico with Logistic Regression, Forestry Research, 23 (3), pp. 345-354.
Pirbavaghar, M. (2015) Deforestation Modelling Using Logistic Regression and GIS, Forest Science, 61 (5), pp. 193-199.
RakeshKumar, S., Nandy, R. A., Kushwaha, S. P. S. (2014) Forest Cover Dynamics Analysis and Prediction Modeling Using Logistic Regression Model, Ecological Indicators, 45, pp. 444-455.