Evaluation of the River Salinity Changes using Hydrochemical Method in Arid Area (Case Study: Namaklan River, Ilam)

Document Type : Research Paper

Authors

1 M.Sc. of Combat Desertification, School of Agriculture, Ilam University, Ilam, Iran

2 Ilam University

3 Associate Professor, Department of Range and Watershed Management, School of Agriculture, Ilam University, Ilam, Iran

Abstract

In arid and semiarid regions, the water quality of some rivers decreases by salinization while passing through some geological formations. This study aims to find the source of the hydrochemical salinity of Namaklan River. Sampling was performed at 6 points along the Namaklan River for 4 seasons and also from before and after the confluence of Godarkhosh River with the Namaklan River. Namaklan River water type is sodium chloride,and due to the persistence and insignificant changes of these elements in water, the chemical composition of river water is constant along the path, which was analyzed by independent samples t-test in Gachsaran and Aghajari Formations. The results showed that, the concentration of different ions and salts before the confluence is low in the Godarkhosh River while it increases at the point of conjunction. This is due to the arrival of different salts and ions from Namaklan River to Godarkhosh River. So that the amount of EC, SAR and RSC in Namkalan River in January were 336, 75 and 23 times more than before joining to the Godarkhosh River, respectively. Based on the chemical analysis and the existence of specific compounds in water samples, it was found that the source of salinity was the influence of Gachsaran formation, because the minerals and salts in the water of the river correspond to the chemical composition of Gachsaran formation.
Extended Abstract
1-Introduction
Increasing the salinity of natural sources of drinking water has been reported as one of the problems affecting low-income countries, but it has not yet been thoroughly investigated. Since sodium chloride is the main salt solution in water, even at a considerable distance from any evaporate formation, and understanding the chemical properties of water in sedimentary basins is important for several geological processes, such as the exchange of liquids and their transmission routes in rocks and the mechanisms for absorbing hydrocarbons. Salinity, which is one of the primary parameters to assess the quality of river water and its increase, has negative impacts on river consumption and river ecosystems, also leads to decrease the quality of surface water and underground water. The factors that negatively impact the quality and quantity of water resources include the geographic location, topographic features, and the expansion of the impervious geological formations, as well as the impact of these formations on water resources. Among the above-mentioned factors, geological formations, especially the Fars group (Gachsaran, Mishan, and Aghajari Formation), have the highest impact on water quality. Therefore, the general objective of this paper is to determine the salinity of the Namaklan River using the hydrochemical method, to study the spatial variation of salinity in the river, and to study the effect of geological formations on the salinity of this river.
2-Materials and Methods
The Namaklan River is located in the southwest of Ilam province in a hot region near Iraq border, and the water of the Namaklan river flows into a large river in the south, called Godarkhosh River. Some of the saltwater is evaporated during the river path and the remains salt on the riverbanks, especially in the warm seasons, forms the special and interesting features.
Initially, base map of the study area, stream network and geological formations were prepared, and then, the suitable sample points were identified. Formerly, by field survey, data of the source of water and the other 7 points were obtained at random interval method during the four seasons of the year, which the point 7 and 8 were located on the Godarkhosh River. The first six sampling points are located on the Namaklan River, with its first three points in the Gachsaran Formation and the next three points in the Aghajari Formation. The points were selected in areas where the flow of water was stable and without turbulence which can mix sediment to the water sample and at each point, the water samples collected by 1-liter bottles. Meanwhile, at the time of sampling, temperature, Electrical Conductivity (EC), pH and Total Dissolved Solids (TDS) were measured by portable electrical conductivity meter (EC meter). The samples were then transferred to the laboratory, and different ions (Ca, Mg, Na, HCO3, SO4, CL, NO3, PO4, Br, B, Zn, Hg, Pb, As, Mn, Fe, and Al) were measured. Finally, by examining the results using independent samples t test, the amount and trend of ion changes in the points and the different seasons were determined, and the river salinity source was determined based on measured parameters.
3-Results and Discussion
After the analysis of water samples, the values of Na, Sodium Adsorption Ratio (SAR), Electrical Conductivity (EC), and Residual Sodium Carbonate (RSC) parameters were measured at different sampling points to determine different water grades based on the Wilcox classification.
Based on the SAR and EC at points of 1 to 6, water quality was classified as C4-S4 (very salty - unsuitable for farming), but for the point 7 as the C4-S3 class (very salty - unsuitable for farming) and point 8 as the class C3-S2 (salty - usable for agriculture). Accordingly based on the percentage of sodium, the water quality for the point of 1 to 6 was bad, at point 7 in the susceptible class of and at the point 8 in the class of acceptable. Also, water quality based on RSC is suitable at all points.
To determine the ionic frequency, first the concentration of anions or cations calculated, then the anions and cations ordered based on concentrations decreasingly. The water type is, in fact, the dominant anion and water facies are the dominant cationic. The water type in the 1 to 6 points was chlorine type and at the 7th and 8th places was sulfate type. Water facies at all sampling points was sodic. The abundance of ions indicates that from 1 to 6 points, which is related to the Namaklan River, the abundance of chlorine ions is due to the dissolution of salt at the depths of the Gachsaran Formation by intrusive waters. Based on the results obtained from the analysis of the samples, the amount of salts and different ions varies from place to place, which is influenced by the Gachsaran Formation.
4-Conclusion
Gachsaran is one of the most important formations of the Zagros zone. The unique features of this formation have been given a special status from the point of view of earthquake, geology, engineering, hydrology and mechanical stratigraphy. Due to the similarity of the composition of the elements in the river water of Namaklan as well as Gachsaran Formation, it is concluded that the source of salinity of the spring is due to the geological formation of the area and also the mechanism of salinity of the spring water, which is penetrated by water and its composition with the bottom layer Gachsaran Formation shows that the salinity of the river is due to the geological formation.
 
 

Keywords


احمدی، طیبه؛ رحیمی چاکدل، عزیز؛ برجسته، آرش (1390) نقش سامانه شکستگی سازند تبخیری گچساران در الگوی آبراهه‌های ناحیه لالی-گتوند در شمال استان خوزستان، مجموعه‌مقالات سی‌امین گردهمایی علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
اکبری ولنی، هوشنگ؛ مصباح‌زاده، طیبه؛ اسکندری دامنه، حامد (1396) آنالیز و بررسی پارامترهای کیفی آب زیرزمینی با کمک نمودارهای کالینز و شعاعی، چهارمین کنفرانس بین‌المللی برنامه‌ریزی و مدیریت محیط‌زیست، دانشکده محیط‌زیست دانشگاه تهران، تهران.
بهرامی، مهدی؛ معاضد، هادی؛ زارعی، حیدر؛ صادقی لاری، عدنان (1388) بررسی تأثیر سازند گچساران بر کیفیّت آب رودخانة زهره در کهکیلویه و بویراحمد، هشتمین سمینار بین‌المللی مهندسی رودخانه، دانشگاه شهید چمران، اهواز.
بهزاد، اردوان؛ حمزه، فرهاد (1388) بررسی تأثیر سازندهای زمین‌شناسی بر روی کیفیّت آب آبخوان دهدشت غربی، جغرافیا، 3 (11)، صص. 112-93.
ثروتی، محمدرضا؛ موغلی، مرضیه؛ شافعی، راحله؛ کسرائیان، علی (1391) تأثیر گنبد نمکی کنارسیاه بر منابع آب و خاک دشت کنارسیاه (فیروزآباد - استان فارس)، جغرافیای طبیعی، 5 (16)، صص. 88-77.
جباری، ایرج (1393) نقش ویژگی‌های زمین‌شناسی و زمین‌ریخت‌شناسی در آلودگی رودخانة سیروان، جغرافیا و پایداری محیط، 4 (12)، صص. 42-27.
خسروشاهی، محمد؛ محمودی، فرج‌اله؛ کاشکی، محمدتقی (1390) محدوده‌های بیابانی ایران با تأکید بر نقش عوامل زمین‌شناختی مؤثّر در تشکیل آنها، علوم زمین، 20 (80)، صص. 22-15.
رئیسی، عزت‌اله؛ زارع، محمد؛ رضایی، محسن (1378) استفاده از ایزوتوپ اکسیژن 18 در تعیین منشأ شوری چشمه‌های کارستی رحمت، سوّمین همایش انجمن زمین‌شناسی ایران، دانشگاه شیراز.
زارعی، مهدی؛ رئیسی اردکان، عزت‌اله (1390) منشأ شوری آبخوان‌های کارستی و آبرفتی منطقة کنارسیاه به روش هیدروشیمیایی و ایزوتوپی، پانزدهمین همایش انجمن زمین‌شناسی ایران، دانشگاه تربیت معلم تهران.
طهماسبی، اصغر (1377) بررسی عوامل مؤثّر در شور شدن آب‌وخاک و گسترش بیابان در حوضة رودخانة شور اشتهارد، پایان‌نامة کارشناسی ارشد رشتة بیابان‌زدایی، استاد راهنما: دکتر سادات فیض‌نیا، دانشگاه تهران.
فروغی، عبدالمجید؛ ارشم، عزیز؛ خسروی‌نیا، احسان؛ اصغری پوردشت بزرگ، نظام (1389) بررسی عوامل افزایش شوری آب کارون در حوزة آبخیز کارون میانی (مطالعة موردی: ایستگاه سدّ کارون تا گدارلندر)، اوّلین همایش ملّی مدیریت منابع آب اراضی ساحلی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه مهندسی آب.
فریادی، سعید؛ شاهدی، کاکا؛ نباتپور، محدثه (1391) مطالعه پارامترهای کیفیّت آب رودخانه تجن با استفاده از تکنیک‌های آماری چند متغیره، پژوهشنامة مدیریت حوزه آبخیز، 3 (6)، صص. 92-75.
فکوری دکاهی، بهمن؛ مظاهری، مهدی؛ محمدولی سامانی، جمال (1396) ارزیابی راه‌کارهای کاهش شوری آب رودخانة کارون با استفاده از سناریوهای مدیریتی، نشریة مهندسی عمران امیرکبیر،50 (2)، صص. 256-245.
فیض‌نیا، سادات (1376) بیابان‌زایی ناشی از ویژگی‌های زمین‌شناسی ایران، مطالعة موردی: گنبدهای نمکی، مجلّة بیابان، 2 (4-1)، صص. 58-47.
قاسمی، علی؛ چراغی، سعید؛ فکری، حسن (1385) بررسی اثرات ذخایر نمکی بر آلودگی منابع آبی (گنبد نمکی نازی در استان چهارمحال و بختیاری)، ششمین همایش ایمنی، بهداشت و محیط‌زیست در معادن و صنایع معدنی محیط‌زیست، شرکت معدنی و صنعتی چادرملو تهران.
کلانتری، نصرت‌اله؛ محمدی بهزاد، حمیدرضا (1392) بررسی منابع تغذیه چشمه‌های کارستی سبزآب و بی‌بی تلخون با استفاده از ایزوتوپ‌های پایدار اکسیژن 18 و دوتریم، نخستین همایش ملّی کاربرد ایزوتوپ‌های پایدار، دانشگاه فردوسی، مشهد.
محمدی بهزاد، حمیدرضا؛ کلانتری، نصراله؛ بیگلری، بابک؛ ترابی کاوه، مهدی (1395) بررسی منشأ شوری آب رودخانة زهره در پایین‌دست سدّ چم‌شیر و قابلیّت آن برای مصارف کشاورزی، زمین‌شناسی کاربردی پیشرفته، 6 (21)، صص. 83-74.
معتمد، احمد (1376) کواترنر (زمین‌شناسی دوران چهارم)، انتشارات دانشگاه تهران، تهران.
معیری، مسعود؛ احمدی‌نژاد، یعقوب (1385) پدیدة دیاپیریسم و تأثیر آن بر آلودگی رودخانة شور دهرم، پژوهش‌های جغرافیایی، 38 (1)، صص. 45-33.
نخعی، محمد؛ موسائی، فیروز؛ رمضانی، اکبر؛ امیری، وهاب (1390) ارزیابی کیفی رودخانة کارون و سرشاخه‌های آن در استان چهارمحال و بختیاری، زمین‌شناسی ایران، 5 (20)، صص. 72-59.
ویسی، شادمان؛ هوشمند، عبدالرحیم؛ پناهی، مصطفی (1389) بررسی منشأ شوری منابع آب زیرزمینی با استفاده از GIS (مطالعة موردی دشت گتوند عقیلی)، سوّمین همایش ملّی مدیریت شبکه‌های آبیاری و زهکشی، دانشگاه شهید چمران اهواز، دانشکدة مهندسی علوم آب.
Ahmed, M. K., Baki, M. A., Islam, M. S., Kundu, G. K., Sarkar, S. K., Hossain, M. M. (2015 a). Human Health Risk Assessment of Heavy Metals in Tropical fish and Shell fish Collected from the River Buriganga, Bangladesh, Environmental Science and Pollution Research, 22 (20), pp. 15880-15890.
Ahmed, M. K., Shaheen, N., Islam, M. S., Al-Mamun, M. H., Islam, S., Banu, C. P. (2015 b). Trace Elements in Two Staple Cereals (Rice and Wheat) and Associated Health Risk Implications in Bangladesh. Environmental Monitoring and Assessment, 187 (6), pp. 326-336.
Dipak, P. (2017) Research on Heavy Metal Pollution of River Ganga: A Review, Annals of Agrarian Science, 15 (2), pp. 278-286.
Fernández, A. C., Fernández, A. M., Domínguez, C. T., Santos, B. L. (2006) Hydrochemistry of Northwest Spain Ponds and Relationships to Groundwaters, The Ecology of the Iberian Inland Waters: Homage to Ramon Margalef, 25 (1-2), pp. 433-452.
Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., Hoque, M. F. (2015) Preliminary Assessment of Heavy Metal Contamination in Surface Sediments from a River in Bangladesh, Environmental Earth Sciences, 73 (4), pp. 1837-1848.
Jeevanandam, M., Kannan, R., Srinivasalu, S., Rammohan, V. (2007) Hydrogeochemistry and Groundwater Quality Assessment of Lower Part of the Ponnaiyar River Basin, Cuddalore district, South India, Environmental Monitoring and Assessment, 132 (1-3), pp. 263-274.
Kim, T. H., Kang, J. H., Kim, S. H., Choi, I. S., Chang, K. H., Oh, J. M., Kim, K. H. (2017) Impact of Salinity Change on Water Quality Variables from the Sediment of an Artificial Lake under Anaerobic Conditions, Sustainability, 9 (8), pp. 1-8.
Knut, B., Kjetil, G. (1994) Salinity Variations in North Sea Formation Waters: Implications for Large-Scale Fluid Movements, Marine and Petroleum Geology, 11 (1), pp. 5-9.
Mir Mohammad, A., Mohammad Lokman, A., Md. Saiful, I., Md. Zillur, R. (2016) Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh, Environmental Nanotechnology, Monitoring & Management, 5, pp. 27-35.
Mosaffaie, J. (2016) Application of Artificial Neural Network, Multiple-Regression and Index-Flood Techniques in Regional Flood Frequency Estimation, International Journal of Water, 10 (4), 328-342.
Mosaffaie, J., Ekhtesasi, M. R., Dastorani, M. T., Azimzadeh, H. R., Zare Chahuki, M. A. (2015) Temporal and spatial variation of the water erosion rate, Arabian Journal of Geosciences, 8 (8), 5971-5979.
Obiefuna, G. I., Sheriff, A. (2011) Assessment of Shallow Ground Water Quality of Pindiga Gombe Area, Yola Area, NE, Nigeria for Irrigation and Domestic Purposes, Research Journal of Environmental and Earth Sciences, 3 (2), pp. 131-141.
Paolo, V., Queenie, C., Aneire, K. (2011) Climate Change Impacts on Water Salinity and Health, Epidemiology and Global Health, 1 (1), pp. 5-10.
Wilcox, L. V. (1955) Classification and use of irrigation waters, US Department of Agriculture, Circ. 969. Washington, DC.
Xie, X., Jiu, J. J., Li, S., Cheng, J. (2003) Salinity Variation of Formation Water and Diagenesis Reaction in Abnormal Pressure Environments, Science in China Series D: Earth Sciences, 46 (3), pp. 269-284.
Zhao, C., Shen, B., Guan, D., Wang, X. (2004) Groundwater Chemical Test in Hotan Subproject Area and Counter Measures for Exploitation, Proceedings 7th International Regional conference on Environment and water, China, 2, pp. 1028-1032.