The Role of Urban Spaces Physical Orientation on the Extent of Climate Comfort of Citizens: Case study of Bandar Abbas

Document Type : Research Paper

Authors

Abstract

Public spaces are the main element of urban structure, in which the stage and backdrop to the drama of public life is shaped. Comfort is a prerequisite for a successful urban space, and an important integrative dimension of the urban experience. In this regard, climate comfort, as the most influential factor, is applicable when the balance is maintained between the temperature released and the temperature absorbed by the skin in the environment. This balance is affected by the environmental elements of temperature, relative humidity, wind flow, and appropriate orientation of urban physical structure. The last element can be recognized as the lowest cost effective factor in climatic comfort of the citizens in public open spaces. In this research, the correlation method is used to determine the appropriate orientation for the public open spaces in Bandar Abbas. Accordingly, at first, a comparison between eight cardinal directions was calculated in terms of the extent of exposure to the sun using analysis of variance method (ANOVA) in R software based on a fixed rectangle form corresponding with these direction during a year. Then, by removing the disruptive winds of comfort, these directions were prioritized using the extent of climate comfort. Based on the results, the north-south orientation is significantly more important than others and the east-west is the most undesirable orientation for public spaces physical orientation in Bandar Abbas. This can be a guideline for future development of the city concern public open spaces. ‌However, other climatic factors, including cover, materials, etc. have been neglected in this study. Other factors and variables must be considered in future researches to study the climatic comfort of citizens comprehensively with the intervention of all variables.
Extended Abstract
1-Introduction
People have five basic needs in urban space: comfort, convenience, effective communication with the surroundings, active relationship. Feeling of comfort includes bioclimatic comfort, physical comfort, and social and psychological comfort (Carr et al., 1992). Climatic comfort is generated when there is a balance between disposed and absorbed temperatures of the skin. Bandar Abbas is located in a warm and humid climate whose climatic characteristics are a long and warm season and a short and cool season (Zabul Abbasi et al., 2006). Due to intense sunlight and high humidity, in most days of the year its open spaces are distant with favorable climate conditions. Lack of attention to the orientation of urban spaces has made urban spaces not have suitable climatic conditions for being used by citizens and lose their position in the city. The aim of this study was to find the most appropriate orientation of physic for open space in Bandar Abbas with an emphasis on increasing climatic comfort.
2-Materials and Methods
The determination of the climate comfort zone in this study has been done on a psychometric chart or clay climate. The data used in this study are hourly data for the analysis of total 44 years (1961-2004) of Bandar Abbas. To get the proper orientation of the urban spaces, the first rectangular space with a golden ratio (length * 1.63 width) and closeness ratio of 1/2 (width * 2height of the wall) is first simulated. Then this rectangular space is considered to have eight different orientations (north-south, 22.5, 45, 67.5, east-west, 112.5, 135, 157.5). This calibration is started as clockwise from the north and 22.5 is added exponentially. In each of these orientations, the solar radiation rate is calculated every 30 min throughout the year and the results are compared. To determine the importance of their differences in different months, at first the significance of these differences should be approved by R software. Thus the analysis of variance (ANOVA) test was used. Also, in the second part (i.e., wind factor) the rate, feature and direction of the winds were obtained on the basis of the monthly wind rose during a 44-year periods in the city. Eliminating undesirable directions and disrupting the climatic comfort, the most desirable and undesirable direction was determined by matching these directions with eight directions.
3-Results and Discussion
Out of eight studied orientations, the range of 45° (NS to 22.5° and NS to 157.5°), is the most favorable range for orientations of the physic of open spaces in Bandar Abbas in terms of the importance of sunlight to increase climatic comfort. In contrast, the most unfavorable range is the range of 45° (EW to 112.5° and EW to 67.5°). We found that NS and EW, respectively are the most favorable and unfavorable orientation. Of these two orientations, 45° and 135° are the most moderate orientations; a range between favorable and unfavorable ranges. In terms of the wind, a certain range cannot be determined, but the best one is NS because it is driven the most flow into space throughout the year. Moreover, conductive flows in this direction has a desirable quality in order to improve the climate comfort and reduce humidity. The results of this section prove the simultaneous effect of these factors on the level of climate comfort of the citizens in open spaces and the role of the orientation of these spaces in controlling these climatic factors. Accordingly, determining the most suitable orientation of the open spaces of the urban spaces requires the attention of all the affected climatic factors and otherwise the actual results may not be obtained.
4-Conclusion
According to the results, the north-south direction is the most suitable orientation for the open spaces of Bandar Abbas, due to the level of climate comfort of the city citizens. Besides, if we use this for open spaces, we will see the highest level of climate comfort in them. It should be noted that in this study, sunshine radiation and flow wind were used as the main factor affecting physical orientations of urban open spaces in order to increase climatic comfort of citizens. ‌However, other climatic factors, including cover, materials ,etc. have been neglected in this study. Other factors and variables must be considered in future researches to study the climatic comfort of citizens comprehensively with the intervention of all variables.
 
 

Keywords


اسپنانی، عباسعلی (۱۳۸۳) قابلیت‌های اقلیم‌شناختی معماری بومی، مطالعات موردی جزیرة کیش، پیک نور، 2 (2)، صص. ۱۰۳-۸۴.
بیکن، ادموند (1376) طرّاحی شهرها: تحوّل شکل شهر از آتن باستانی تا برازیلیای مدرن، ترجمة فرزانه طاهری، مرکز مطالعات و تحقیقات شهرسازی و معماری ایران، تهران.
پارسی، حمیدرضا (۱۳۸۱) شناخت محتوای فضای شهری، هنرهای زیبا، 11 (۱۱)، تهران، صص. ۴9-41.
پوراصغریان، آرزو؛ سی‌سی‌پور، مرضیه؛ رنجبر، سعید (۱۳۸۹) ارزیابی اقلیم آسایشی بندرعبّاس در راستای توسعة گردشگری، همایش سلامت، محیط‌زیست و توسعه پایدار، دانشگاه آزاد اسلامی واحد بندرعبّاس.
پیرنیا، محمد کریم (۱۳۷۱) آشنایی با معماری اسلامی ایران، تدوین غلامحسین معماریان، انتشارات دانشگاه علم و صنعت، تهران.
حسین‌آبادی، سعید؛ لشکری، حسن؛ سلمانی مقدم، محمد (۱۳۹۱) طرّاحی اقلیمی ساختمان‌های مسکونی شهر سبزوار با تأکید بر جهت‌گیری ساختمان و عمق سایبان، دانشگاه سیستان و بلوچستان، جغرافیا و توسعه، 10 (27)، صص. ۱۱۵-۱۰۳.
حمزه‌نژاد، مهدی؛ ربانی، مریم؛ ترابی، طاهره (۱۳۹۴) نقش باد در سلامت در طب اسلامی و تأثیر آن در مکان‌یابی و ساختار شهرهای سنّتی ایران، نقش‌جهان، 5 (1)، صص. 57-43.
حیدری، شاهین (۱۳۹۱) برهم‌کنش جریان هوا، دما و راحتی در فضاهای باز شهری مطالعات موردی اقلیم گرم و خشک ایران، هنرهای زیبا، معماری و شهرسازی، 17 (2)، صص. ۴۲-۳۷.
رازجویان، محمود (۱۳۸۸) آسایش در پناه معماری همساز با اقلیم، انتشارات دانشگاه بهشتی، تهران.
رنجبر، احسان؛ پورجعفر، محمدرضا؛ خلیجی، کیوان (۱۳۸۹) خلاقیت طرّاحی اقلیمی متناسب با جریان باد در بافت قدیم بوشهر، باغ نظر، 7 (13)، صص. ۳۴-۱۷.
روحی‌زاده، امیررضا (۱۳۸۸) تنظیم شرایط محیطی ساختمان، انتشارات عصر کنکاش، تهران.
طاووسی، تقی (۱۳۸۱) تابش زمستانی خورشید و شهرسازی اصفهان، سپهر، 11 (43)، صص. 46-42.
فرج‌زاده، منوچهر؛ عباسی، محمدحسین (۱۳۹۱) بهینه‌سازی جهت ساختمان‌های شهر قیر در رابطه با تابش آفتاب با استفاده از روش روابط کسینوس، جغرافیایی سرزمین، 9 (35)، صص. ۶۲-۴۵.
قبادیان، وحید (۱۳۹۰) بررسی اقلیمی ابنیة سنّتی ایران، انتشارات دانشگاه تهران، تهران.
قویدل رحیمی، یوسف؛ احمدی، محمود (۱۳۹۲) برآورد و تحلیل زمانی آسایش اقلیمی شهر تبریز، جغرافیا و توسعه، 11 (33)، صص. ۱۸۲-۱۷۳.
کسمایی، مرتضی (۱۳۶۳) اقلیم و معماری، چاپ اوّل، مرکز تحقیقات ساختمان و مسکن تهران.
لبز، کنت؛ واتسون، دونالد (۱۳۹۰) طرّاحی اقلیمی اصول نظری و اجرایی کاربرد انرژی در ساختمان، ترجمة وحید قبادیان و محمد فیض مهدوی، انتشارات دانشگاه تهران، تهران.
مشیری، شهریار (۱۳۸۸) طرّاحی پایدار بر مبنای اقلیم گرم و مرطوب، هویت شهر، 3 (4)، صص. ۶۴-۳۹.
نجارسلیقه، محمد (۱۳۸۲) توجّه به باد در ساخت کالبد فیزیکی شهر زابل، جغرافیا و توسعه، 1 (2)، صص. ۱۲۲-۱۰۹.
نجارسلیقه، محمد (۱۳۸۳) مدل‌سازی مسکن همساز با اقلیم برای شهر چابهار، جغرافیا و توسعه، 2 (۴)، صص. ۱۷۰-۱۴۷.
نقره‌کار، عبدالحمید (۱۳۸۷) درآمدی بر هویت اسلامی در معماری و شهرسازی، وزارت مسکن و شهرسازی، معاونت شهرسازی و معماری، دفتر معماری و طرّاحی، شرکت طرح و نشر پیام سیما، تهران.
نیلسن، هالگرکخ (۱۳۸۵) تهویة طبیعی راهنمای طرّاحی اقلیم مناطق گرم، ترجمة محمد احمدی‌نژاد، نشر خاک، اصفهان.
هاشمی، فاطمه؛ حیدری، شاهین (۱۳۹۱) تأثیر طرّاحی معماری بر مصرف انرژی منازل مسکونی اقلیم سرد، با تکیه بر چرخة خورشیدی، نامة معماری و شهرسازی، ۳ (۶)، صص. ۱۵۷-۱۳۹.
هدمن، ریچارد؛ یازوسکی، اندرو (۱۳۸۵) مبانی طرّاحی شهری، ترجمة راضیه رضازاده و مصطفی عباس‌زادگان، نشر دانشگاه علم و صنعت، تهران.
American Society of Heating (1985) Refrigerating, and Air Conditioning Engineers (ASHRAE), Inc, New York, NY.
Andrade, H., Alcoforado, M. J. Oliveira, S. (2011) Perception of Temperature and Wind by Users of Public Outdoor Spaces: Relationship with Weather Parameters and Personal Characteristics, International Journal of Biometeorology, 5 (55), pp. 665-680.
Biket, A. P. (2006) Architectural Design Based on Climatic Data, 1st International CIB Endorsed METU Postgraduate Conference, Built Environment & Information Technologies, Ankara, 15, pp. 261-267.
Carmona, M., Tiesdell, S., Heath, T., Oc, T. (2010) Public Places Urban Spaces: The Dimensions of Urban Design, Oxford, Architectural Press.
Carr, S., Francis, M., Rivlin, L., Stone, A. (1992) Public space, Combridge, Combridge University Press.
Eley, Ch. (1998) Passive Solar Design Strategies: Guidelines for Home Building, San Francisco, California, Passive Solar Industries Council, National Renewable Energy Laboratory.
Fanger, P. O. (1970) Thermal Comfort: Analysis and Applications in Environmental Engineering, Danish Technical Press, Copenhagen, Denmark.
Gagge, A. P., Stolwijk, J. A. J., Nishi, Y. (1971) An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response, ASHRAE Transactions, 77, pp. 247-262.
Givoni, B. (1976) Man Climate and Architecture (2nd edition), Applied Science Publishers.
Holman, J. P. (2011) Heat Transfer, Eighth SI Metric Edition. McGraw-Hill.
Hui, S. C. M., Cheung, K. P. (1997) Climatic Data for Building Energy Design in Hong Kong and Mainland China, in Proc. of the CIBSE National Conference, London.
IPENZ, Institution of Professional Engineers New Zealand Incorporated (2007) Urban Design, Institution of Professional Engineers, New Zealand Incorporated, New Zealand.
Kheirabadi, F., Alizadeh H., Nourmohammadzad, H. (2017) Improving Climatic Comfort of Citizens by Adjusting the Orientation and Extension of Physics of City Squares: Case Study of Yazd, Chinese Journal of Urban and Environmental Studies 5 (02), pp. 1-16.
Nikolopoulou M., Baker, N., Steemers, K. (2001) Thermal Comfort in Outdoor Urban Spaces: Understanding the Human Parameter, Solar Energy, 25 (70), pp. 27-35.
Nourmohammadzad, H., Alizadeh, H., Kheirabadi, F. (2017) Improving climatic emphasizing the effect of sunshing radiation on the proper oriention of the physic of squares in Yazd, Asian Journal of Civil Engineering (BHRC), 18 (1), pp. 99-118.
Oke, T. R. (1988) Street Design and Urban Canopy Layer Climate, Energy and Buildings, 1 (11), pp. 14-28.
Olgyay, V. (1981) Progettare Conil Clima, un approcolo Bioclimatico al Regionalismo Architettonico, Padova Franco Muzzio Edition.
Popper, K. (2002) The Logic of Scientific Discovery, Routledge.
Pressman, N. (2000) Introduction: Climatic Factors in Urban Design, Arch. & Comport. Arch. & Schav, 10 (1), pp. 5-7.
Szokolay, S. V. (1987) Thermal Design of Buildings, (2nd edition). RAIA Education Division.