Assessment the Effects of Climate Change on the Degree of Heating and Cooling Days of Iran

Document Type : Research Paper

Authors

1 Associate Professor of Climatology, University of Razi, Kermanshah, Iran

2 Ph.D. Student of Climatic Hazards, University of Razi, Kermanshah, Iran

3 Assistant Professor of Climatology, University of Guilan, Guilan, Iran

Abstract

Energy, as one of the most important environmental and economic sustainable development indices, is affected by the conditions of climate change. In addition, they are considered as the main factors of increase or decrease of fuel consumption and energy and the changes of cooling and heating degree-days. The quality controlled daily temperatures data of 44 synoptic stations across the country (1976-2005), as well as RCM simulations over the CORDEX were explored to evaluate the potential changes in heating and cooling degree-days due to climate change on Iran. Downscaled output of three RCM models of CNRM، EC-Earth and GFDL, with the spatial resolutions of 0.44 degrees under two emissions trajectories (RCPs 4.5 and 8.5), are applied in this regard. The model outputs simulate the increase of cooling demand in the horizons of 2020-2020 and 2040-2050. The highest increase is expected in the regions of the southern shores of the south and especially in the southeastern part of the country and in the central and milder parts of the north coast. It is expected to stabilize and reduce the need for cooling in the Alborz and Zagros ridgetop. In spite of the reduction in heating demand for the country, the horizons are foreseen. The highest decrease is expected in the mountainous regions of the Alborz, Zagros and Azerbaijan, and it is expected to stabilize and increase the need for heating in the southern and southern regions of the country, and it will be localized in the center and north coasts.
 Conversely, heating need decreases in RCPs 8.5 at future years GFDL models output more than other models. Totally, the results represent that the need for cooling (increasing min 23% and max 47%) will be increased and heating needs (decreasing min 9% and max 17%) will be decreaseed in the last two cuts the horizons 2020 to 2030 and the 2040 to 2050 in both emissions trajectories RCPs 4.5 and 8.5
Extended Abstract
1-Introduction
Energy, as one of the most important environmental and economic sustainable development indices, is affected by the conditions of climate change. In addition, they are considered as the main factors of increase or decrease of fuel consumption and energy and the changes of cooling and heating degree-days. Generally, the need for heating and cooling by definition is the sum of difference between mean daily temperatures from a given threshold in certain periods of the year which is expressed in degree-days. Generally, if the average air temperature exceeds 21 degrees Celsius threshold value, the need to cool the environment will be created that day. If the average air temperature is less than 18 degrees Celsius threshold, on that day will need to warm the environment.
2- Materials and Methods
The quality controlled daily temperatures data of 44 synoptic stations across the country (1976-2005), as well as RCM simulations over the CORDEX were explored to evaluate the potential changes in heating and cooling degree-days due to climate change on Iran.  In the study, two types of data, observed and simulated data, (past and future) are examined. The observational data is considered with past data CORDEX database from 1976 to 2005. The reason for the 30-year period has been related to following the principles of parametric data and fact of longevity or base on period of CORDEX data (1951 to 2005). Downscaled output of three GCM model of CNRM، EC-Earth and GFDL, with the spatial resolutions of 0.44 degree under two emissions trajectories (RCPs 4.5 and 8.5), was applied in this regard. Post processing error of the model was used To moderate. In general, the mechanism of action of regional circulation model  (RCM) is calculated using change factor in this case such as the difference or monthly ratio of simulations of regional circulation model in the future with the last period for heating and cooling degree-days which will be added to the data period last observation stations.
3-Results and Discussion
The analysis results of  the cooling degree-days (CDD) show  that generally 65.9 percent of the stations have experienced a significant increase (in 0.95 sig level), 29.6 percent of the condition with no significant process and 4.6 percent with decreasing process. This change started in 1996 in the country, according to studies by the homogeneity test by Petit test. Regarding heating degree-days (HDD), generally, 56.8 percent of the stations observed a significant decrease (in 0.95 sig level) and 29.6 percent with no significant process. The downtrend at average form is calculated with the amount of Sens Slope 7.5 percent in the whole country. This change stated 1997 in the country, according to studies by the homogeneity test by Petit test. . Model outputs show that CDD will be increased in country especially in south, southeast, central and southwest of country in both RCP. The EC-Earth output under the trajectory of 8.5, indicates a further increase in cooling needs for the horizon in 2040 to 2050. Three models output, show that HDD will decrease all over the country, especially in the highlands, Alborz and Zagros Mountainous. Conversely, heating need decreases more, according to the GFDL models outputs. The results represent an increase in the need for cooling and heating needs of the country in the last two cuts of the Horizon from 2020 to 2030 and the 2040 to 2050 in both emissions trajectories RCPs 4.5 and 8.5. Overall, in the extreme condition in the decade of 2040 and 2050, about 13 percent of the area of country (approximately 297 thousand square km) will pass from the mean line. This suggests that reducing the need for heating will be more than of increase cooling needs. Overall, major changes in the temperature status of the country will occur in cold seasons.
4- Conclusion
This study was based on data analysis of observed and simulated extreme values of temperature indicated that heating and cooling degree days of the country is changing. So, the degree-days of heating and heating needs are reduced, and degree-days cooling and the need for cooling is increasing. Of course, the changes in heating needs on the in 2020-2030s and 2040-2050s will be more than changes of cooling need. Leading the constraints and opportunities are created that can be cited to reduce the need for fossil fuels and the need for electrical power in the cold season.
 

Keywords


احمدی، محمود؛ داداشی رودباری، عباسعلی؛ ابراهیمی، رضا (1396) مدل‌سازی درجه-روز گرمایش و سرمایش در ایران، پژوهشهای دانش زمین، 8 (30)، صص. 140-127.
امیدوار، کمال؛ ابراهیمی، رضا؛ مزیدی، احمد (1395) واکاوی اثر گرمایش جهانی بر درجه-ساعت‎های گرمایش و سرمایش ماهانة ایران، برنامه‌ریزی و آمایش فضا، 20 (2)، صص. 62-41.
امیدوار، کمال؛ ابراهیمی، رضا؛ نارنگی‎فرد، مهدی (1394) پیش‌بینی نیاز سرمایش استان فارس با کاربست داده‎های EH5OM، مخاطرات محیط طبیعی، 4 (6)، صص. 75-57.
انتظاری، علیرضا؛ احمدی، حمزه؛ کرمی، مختار؛ احمدی، طالب (1393) تحلیلی بر شرایط زیست اقلیمی و درجه روزهای نیاز گرمایشی و سرمایشی شهر اسلام‎آباد غرب، جغرافیا و برنامهریزی، 21 (59)، صص. 21-1.
حقیقت‎جو، پرویز (1381)، کاربرد درجه روز گرمایشی و سرمایشی در تعیین مقدار انرژی و سوخت مورد نیاز و قابلیّت سکنی‌پذیری مناطق مختلف کشور، دوّمین همایش بین‌المللی بهینه‌سازی مصرف سوخت در ساختمان، تهران، سازمان بهینه سازی مصرف سوخت کشور.
حیدری بنی، مهران؛ پارسا، شاهرخ (1389) تحلیلی بر درجه-روز نیاز گرمایشی استان چهارمحال و بختیاری، اوّلین همایش ملّی برف، یخ و بهمن و دوّمین همایش شناخت معضلات آبخیزداری و ارائة راه‌حلهای مناسب در حوضههای آبخیز کارون و زایندهرود، مرکز تحقیقات کشاورزی و منابع طبیعی استان چهارمحال و بختیاری.
ذوالفقاری، حسن؛ هاشمی، رضا؛ رادمهر، پریوش (1388) تحلیلی بر نیازهای سرمایشی و گرمایشی در شمال غرب ایران، پژوهشهای جغرافیای طبیعی، 41 (70)، صص. 34-21.
راه‎چمنی، مهدی (1394) تأثیر تغییر اقلیم بر نیازهای سرمایش و گرمایش در استان خراسان رضوی، پایان‌نامة کارشناسی ارشد، استاد راهنما: محمد باعقیده، دانشگاه حکیم سبزواری، سبزوار.
رمضانی، بهمن؛ کاظم‎نژاد، زهرا (1393) واکاوی و اقلیم‎بندی مجموع میانگین نیاز گرمایش و سرمایش در قلمرو گیلان با تأکید بر مصرف گاز طبیعی خانوار، چشمانداز جغرافیایی در مطالعات انسانی، 9 (26)، صص. 16-1.
مسعودیان، سید ابوالفضل، ابراهیمی، رضا؛ محمدی، منیره (1393) پهنه‌بندی مکانی - زمانی نیاز گرمایش و سرمایش فصلی و سالانة ایران، سیستم اطّلاعات جغرافیایی (سپهر)، 23 (90)، صص. 90-83.
مسعودیان، سید ابوالفضل؛ ابراهیمی، رضا؛ علیجانی، بهلول (1391) تحلیل فضایی تغییرات زمانی مکانی درجه روز سرمایشی ماهانة ایران، پژوهشهای اقلیم‌شناسی، 3 (12)، صص. 12-1.
مسعودیان، سید ابوالفضل؛ علیجانی، بهلول؛ ابراهیمی، رضا (1390) واکاوی میانگین مجموع درجه/ روز مورد نیاز (گرمایش و سرمایش) در قلمرو ایران، پژوهش‌نامة جغرافیایی، 1 (1)، صص. 36-23.
ملکی، عباس (1390) سیاست‌گذاری انرژی، انتشارات دانشگاه صنعتی شریف، تهران.
میرموسوی، سید حسین؛ شفیعی، شهاب؛ تقی‎زاده، زهرا (1393) ارزیابی و برآورد درجه‌روز و شاخص سازگاری دمایی جهت طرّاحی مسکن همساز با اقلیم (مطالعة موردی: ایستگاه سینوپتیک مهرآباد تهران)، سیستم اطّلاعات جغرافیایی (سپهر)، 23 (89)، صص. 87-81.
Atilgan, A. Yücel, A., Öz, H., Saltuk, B. (2016) Determination of Heatingand Cooling Degree Days for Broiler Breeding In the Tigris Basin, Scientific Papers. Series D., Animal Science, Vol. LIX.
Barry, R. G., Chorley, R. J. (2003) Atmosphere, Weather and Climate, Routledge.
Borah, P., Singh, M. K., Mahapatra, S. (2015) Estimation of Degree-Days for Different Climatic Zones of North-East India, Sustainable Cities and Society, 14, pp. 70-81.
Brown, M. A., Cox, M., Staver, B., Baer, P. (2014) Climate Change and Energy Demand in Buildings, ACEEE Summer Study on Energy Efficiency in Buildings, pp. 3-38.
Büyükalaca, O., Bulut, H., Yılmaz, T. (2001) Analysis of variable-base heating and cooling degree-days for Turkey, Applied Energy, 69 (4), pp. 269-283.
Cheng-wen, Y., Yao, J. (2010) Application of ANN for the prediction of building energy Consumption at Different Climate Zones with HDD and CDD, Future Computer and Communication (ICFCC), 2010 2nd International Conference on 3 (21-24), Wuhan, V3-286-V3-289.
Christenson, M., Manza, H., Gyalistrasb, D. (2006) Climate warming impact on degree-days and Building Energy Demand in Switzerland, Energy Conversion and Management, 47 (6), pp. 671-686.
CMAP Report. (2013) Appendix A: Primary Impacts of Climate Change in the Chicago Region, Chicago Metropolitan Agency for Planning, pp. 1-29.
Environment Protection Agency (EPA). (2014) Climate Change Indicators in the United States: Heating and Cooling Degree Days, www.epa.gov/climatechange/indicators, 5 p.
Erbs, D. G., Klein, S. A., Beckman, W. A. (1983) Estimation of Degree-Days and Ambient Temperature Bin Data from Monthly-Average Temperatures, ASHRAE Journal, Volume: pp. 60-65
ESRI. (2013) help of Arc GIS 10.2, New York Street, Redlands, CA 92373-8100, USA.
Giannakopoulos, C., Psiloglou, B. E. (2006) Trends in Energy Load Demand for Athens, Greece: Weather and Non-Weather Related Factors, Climate Research Clim Res, 31, pp. 97-108.
Hadley, S. W, Erickson, D J., Hernandez, J. L. (2006) Modeling U.S. Energy Use Changes with Global Climate Change, Oak Ridge National Laboratory U.S. Department of Energy (DOE).
Hamlet, A. F., Lee, S-Y., Mickelson, K. E. B., Elsner, M. M. (2010) Effects of Projected Climate Change on Energy Supply and Demand in the Pacific Northwest and Washington State, Chapter 4, Energy, pp. 165-190.
Jagloma, W. S., McFarland, J. R., Colley, M. F., Mack, Ch. B., Venkatesh, B., Miller, Rawlings, L., Juanita, H., Schultz, P. A., Perkins, B., Casola, J. H., Martinich, J. A., Cross, P., Kolian, M. J., Kayin, S. (2014) Assessment of Projected Temperature Impacts from Climate Change on the U.S. Electric Power Sector Using the Integrated Planning Model, Energy Policy 73, pp. 524-539.
Lindelöf, D. (2016) Bayesian estimation of a building’s base temperature for heating degree-days, Energy and Buildings, DOI:10.13140/RG.2.1.3516.7122.
Matzarakis, A., Balafoutis, C. (2004) Heating degree-days over Greece as an index of energy consumption, International Journal of Climatology, 24 (14), pp. 1817-1828.
Matzarakis, A., Thomsen, F. (2009) Heating and Cooling Degree Days as an Indicator of Climate Change in Freiburg, University of Freiburg, Germany, pp. 339-344.
Petri, Y., Caldeira, K. (2015) Impacts of Global Warming on Residential Heating and Cooling Degree-Days in the United States, Sci. Rep. 5, 12427; doi: 10.1038/srep12427.
Priya, S., Shanmuga, Premalatha, M., Rajkumar, S. R., Thirunavukkarasu, I. (2011) Analysis Of Cooling Degree Days For Tiruchirappalli – A District In India, IJRRAS, 8 (1), pp. 44-56.
Psilogloua, B. E. Giannakopoulosa, C., Majithiab, S., Petrakisa, M. (2009) Factors Affecting Electricity Demand in Athens, Greece and London, UK: A Comparative Assessment, Energy, 34 (11), pp. 1855-1863.
Roshan, Gh. R., Grab, S. W. (2012) Regional Climate Change Scenarios and Their Impacts on Water Requirements for Wheat Production in Iran, International Journal of Plant Production, 6 (2), pp. 239-265.
Thom, H. C. S. (1954) Normal Degree Days below Any Base, Monthly Weather Review, 82 (5), pp. 111-115.
Way, R. G., Lewkowicz, A. G., Bonnaventure, P. P. (2017) Development of Moderate‐Resolution Gridded Monthly Air Temperature and Degree‐Day Maps for the Labrador‐Ungava Region of Northern Canada, International Journal of Climatology, 37 (1), pp. 493-508.