Analysis of the Effect of Precipitation Type on Flow Simulation in Talar and Khoramabad Watershed

Document Type : Research Paper

Authors

Abstract

Using a model with integrity and high performance to simulate the hydrological process in deferent watersheds is very important. Present study aims to assess the efficiency of SWAT model in simulating the produced runoff of different precipitation in Khorramabad watershed with 2467 square kilometers and in Talar watershed with 2057 square kilometers. Average precipitation in Khorramabad and Talar watershed is 560 mm and 612 mm respectively.  Besides, both of them have semi-hummed climate. Therefore, the maps of land use, soil, digital elevation model and meteorological data were collected for each region. Hydrological response units (HRU) was determined in 223 in Talar and 265 HRU khorramabad watershed by overlapping spatial layers. The SUFI2 algorithm was used to analyze parameter sensitivity and determine optimal values for parameters. The results showed that curve number parameters have high sensitivity in both watersheds. NS and R2 statistical coefficients were used to determine optimal values of model efficiency. The values of these coefficients in Khorramabad watershed are 0.74 and 0.72 respectively and in Talar Watershed are 0.64 and 0.66 respectively. The results showed that the types of precipitation have pivotal effect on model output and occurring snow precipitation decreases performance of the model. Overall, the results showed that the SWAT model availability is appropriate enough in both watershed and this model can be used for watershed management in these areas

Keywords


آذری، محمود؛ مرادی، حمیدرضا؛ ثقفیان، بهرام؛ فرامرزی، منیره (1392) ارزیابی اثرات هیدرولوژیکی تغییر اقلیم در حوضة آبخیز گرگانرود. آب‌وخاک مشهد، 27 (3)، صص. 547-537.
اخوان سمیرا؛ جودی حمزه‌آباد، آیدین (1394) شبیه‌سازی جریان ورودی به دریاچة ارومیه با استفاده از مدل SWAT، علوم و فنون کشاورزی و منابع طبیعی، 19 (72)، صص. 33-23.
اخوان، سمیرا؛ عابدی کوپایی، جهانگیر؛ موسوی، سید فرهاد؛ عباسپور، کریم (1389) تخمین «آب آبی» و «آب سبز» با استفاده از مدل SWAT در حوضة آبریز همدان – بهار، علوم و فنون کشاورزی و منابع طبیعی، 14 (53)، صص. 9-3.
بابائی فینی، ام‌السلمه؛ فرج‌زاده، منوچهر (1381) الگوهای تغییرات مکانی و زمانی بارش در ایران. مدرس علوم انسانی، 6 (3)، صص. 69-51.
باستانی اله‎آبادی، آرش؛ تلوری، عبدالرسول؛ حسینی، مجید (1391) ارزیابی مدل SWAT2009 در برآورد رواناب حوضة آبخیز کردان، همایش ملّی انتقال آب بین حوضهای، دانشگاه آزاد اسلامی واحد شهرکرد، شهرکرد.
عطفی غلامرضا (1393) شبیه‌سازی بیلان آب و رسوب حوضة آبخیز اهرچای با استفاده از مدل SWATو ArcGIS، پایان‌نامة کارشناسی ارشد، استاد راهنما: مجید رئوف، دانشگاه محقّق اردبیلی، اردبیل.
کاویان، عطاالله؛ گلشن، محمد؛ روحانی، حامد؛ اسمعلی، اباذر (1392) ارزیابی تأثیر خصوصیات فیزیوگرافی حوضه بر عملکرد مدل SWAT، منابع آب و توسعه، 3، صص. 193-184.
کاویان، عطاالله؛ گلشن، محمد؛ روحانی، حامد؛ اسمعلی، اباذر (1394) شبیه‌سازی رواناب و بار رسوب حوضة آبخیز هراز با بهره‌گیری از الگوی SWAT، پژوهش‌های جغرافیای طبیعی تهران، 47، صص. 211-197.
گلشن، محمد؛ کاویان، عطاالله؛ روحانی، حامد؛ اسمعلی، اباذر (1394) واسنجی چند ایستگاهی رواناب حوضة آبخیز هراز با مدل SWAT، تحقیقات آب‌وخاک ایران، 46 (2)، صص. 303-293.
Abbaspour, K. C., Vejdani, M., Haghighat, S. (2007) SWAT-CUP Calibration and Uncertainty Programs for SWAT, International Congress on Modeling and Simulation: Land, Water and Environmental Management, Christchurch, New Zealand.
Beven, K. (2001) How far Can We Go in Distributed Hydrological Modeling?, Hydrology, Earth System Science, 5, pp. 1-12.
Binaman, J., Shoemaker, C. A. (2005) An Analysis of High-Flow Sediment Event Data for Evaluating Model Performance, Hydrological Processes, 19, pp. 605-620.
Ficklin, D. L., Stewart, I. T., Maurer, E. P. (2013) Effects of Projected Climate Change on the Hydrology in the Mono Lake Basin, Journal California Climatic Change, 116 (1), pp. 111-131.
Gassman, P. W., Reyes, M., Green, C. H., Arnold, J. G. (2007) The Soil and Water Assessment Tool: Historical Development, Applications, and Future Directions, Transactions of the ASABE, 50 (4), pp. 1212-1250.
Gotzinger, J., Bgrdossy, A. (2007) Comparison of Four Regionalization Methods for a Distributed Hydrological Model, Hydrology, 333, pp. 374-384.
Hwa, K., Pachepsky, Y. A., Ha, J., Kim, J., Park, M., (2012) The Modified SWAT Model for Predicting Fecal Coliforms in the Wachusett Reservoir Watershed, Water Research, 46 (15), pp. 4750-4760.
Karlsson, I. B., Sonnenborg, T. O., Refsgaard, J. C., Trolle, D., Børgesen, C. D., Olesen, J. E., Jensen, K. H. (2016) Combined Effects of Climate Models, Hydrological Model Structures and Land Use Scenarios on Hydrological Impacts of Climate Change. Hydrology, 535, pp. 301-317.
Khoi, D. N., Suetsugi, T. (2014) Impact of Climate and Land-Use Changes on Hydrological Processes and Sediment Yield-A Case Study of the Be River Catchment, Vietnam, Hydrological Sciences. 59 (5), pp. 1095-1108.
Kirchner, J. W. (2012) Getting the Right Answers for the Right Reasons: Linking Measurements, Analyses, and Models to Advance the Science of Hydrology, Water Resources Researches, 42, pp. 1-5.
Lerat, J., Andréassian, V., Perrin, C., Vaze, J., Perraud, J. M., Ribstein, P., Loumagne, C. (2012) Do Internal flow Measurements Improve the Calibration of Rainfall–Runoff Models?, Water Resource Research, 48 (2), pp. 1-18.
Li, T., Gao, Y. (2015) Runoff and Sediment Yield Variations in Response to Precipitation Changes: A Case Study of Xichuan Watershed in the Loess plateau, China, Water, 7 (10), pp. 5638-5656.
Li, Z, Liu, W. Z., Zhang, X. C., Zheng, F. (2009) Impact of Land Use Change and Climate Variability on Hydrology in an Agricultural Catchment on the Loess Plateau of China, Hydrology, 377, pp 35-42.
Liu, J., Yuan, D., Zhang, L., Zou, X., Song, X. (2016) Comparison of Three Statistical Downscaling Methods and Ensemble Downscaling Method Based on Bayesian Model Averaging, China, Advances in Meteorology, 1 (1), pp. 1-12.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R. (2005) Soil and Water Assessment Tool Theoretical Documentation, Soil & Water Research Laboratory, Agricultural Research Service, and Blackland Agricultural Research Station, Temple, Texas.
Neitsch, S. L., Arnold, J. G., Kinity, J. R., Williams, J. R. (2011) Soil and Water Assessment Tool Theoretical Documentation, College Station: Texas Water Resources Institute, Technical Report no 406.
Panhalkar, S. S. (2014) Hydrological Modeling Using SWAT Model and Geoinformatic Techniques, Egyption, Remote Sensing and Space Science, 17 (2), pp. 197-207.
Pechlivanidis, I. G., Mclntyre, N. R., Wheater, H. S. (2011) Calibration of the Semi-Distributed PDM Rainfall–Runoff Model in the Upper Lee Catchment, UK, Hydrology, 386 (1-4), pp. 198-209.
Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Hauck, L. (2001) Validation of the SWAT Model on a Large River Basin with Point and Nonpoint Sources, The American Water Resources Association, 37 (5), pp. 1169-1188.
Setegn, S. G., Dargahi, B., Srinivasan, R., Melesse, A. M. (2010) Modeling of Sediment Yield from Anjeni-Gauged Watershed, Ethiopia Using SWAT Model, American Water Resources Association, 46 (3), pp. 514-526.
Thampi, S. G., Raneesh, K. Y., Surya, T. V. (2010) Influence of Scale on SWAT Model Calibration for Stream flow in a River Basin in the Humid Tropics, Water Resources Management, 24 (15), pp. 4567-4578.
Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., Yao, A. (2012) Multi-Site Calibration, Validation, Sensitivity Analysis of the MIKE SHE Model for a Large Watershed in China, Hydrology Earth System Sciences, 16, pp. 4621-4632.
Wei, X. H., Liu, W. F., Zhou, P. C. (2013) Quantifying the Relative Contributions of Forest Change and Climatic Variability to Hydrology in Large Watersheds: A Critical Review of Research Methods, Water, 5 (2), pp. 728-746.
Yang, J., Reicher, P., Abbaspour, K. C., Xia, J., Yang, H. (2008) Comparing Uncertainty Analysis Techniques for a SWAT Application to the Chao he Basin in China. Hydrology, 358 (1-2), pp. 1-23.
Yen, H., White, M. J., Jeong, J., Arnold, J. G. (2015) Evaluation of Alternative Surface Runoff Accounting Procedures Using the SWAT Model, International Journal Agriculture and Biology Engineering, 8 (1), pp. 1-15.
Zuo, D., Xu, Z., Zhao, J., Abbaspour, C., Yang, H. (2015) Response of Runoff to Climate Change in the Wei River Basin, China, Hydrological Sciences, 60 (3), pp. 508-522.