Spatial pattern of Trees in the Riparian Forests (Case Study: Wildlife Refuge of Karkhe)

Document Type : Research Paper

Author

razi university

Abstract

Analysis of the spatial pattern is an important element for the optimum management and having knowledge about ecosystem function. This study was conducted to analyze the spatial pattern of trees and shrub in the riparian forest landscape of Karkhe, also for assessment of their spatial variability regarding the distance from the river. The number of trees and shrubs were sampled using 117 plot (20m × 20 m) along parallel transects (perpendicular to the river). The distance between transects was 500 m. The variograms of Populus euphratica and Lycium shawii were spherical. Tamarix sp. and total of them were exponential. All revealed the presence of spatial autocorrelation. The range of influence was 186 m for Tamarix sp., 362 m for Populus euphratica, 749 m for Lycium shawii and 208 for total. The kriging maps showed spatial variability of them. The spatial pattern of species total and Tamarix sp. are similar that was shown in correlation. So Tamarix sp. is a major part of this forest. Populus euphratica is replacing with Lycium shawii. Also the higher distribution is nearby river for all trees and shrub.
Extended Abstract
1-Introduction 
In the last 15-20 years, riparian forests have become recognized as important components of landscape and serve as a vital link between the aquatic environment and upland ecosystems. Riparian ecosystems are aquatic-terrestrial ecotones with unique biotic, biophysical and landscape characteristics. Accordingly, sustainability and maintenance of riparian vegetation or restoring of degraded sites is critical to sustain inherent ecosystem function and values. Many scientists believe promoting sustainability is the overarching goal of landscape (and regional) planning. A current challenge in ecology is underestimating how patterns and processes vary with scale and searching for general principles (assembly rules) which determine the species composition of communities. Also a fundamental and unanswered research question in landscape ecology centers on how the spatial arrangement of the ecosystems influences the distribution and abundance of species. Description of patterns in species assemblages and diversity is an essential step before generating hypotheses in functional ecology. Information about the spatial pattern of tree species in riparian forest ecosystems is limited though required, e.g. for understanding spatial distribution effects of trees on ecosystem processes. The practical consequences of these findings are useful for sustainable management of forest ecosystems and in monitoring of forest evolution. One main reason responsible for the absence of information about spatial pattern researche is the lack of adequate methods for analyzing data. Geostatistics provide descriptive tools such as variogram to characterize the spatial pattern of continuous and categorical forest attributes. This method allows assessment of consistency of spatial patterns as well as the scale at which they are expressed. This study was conducted to analyze spatial patterns of tree species in the riparian forest landscape of Karkhe.
2- Materials and Methods
The study was carried out in Wildlife Refugee of Karkhe in the riparian forest of the southwestern Iran (3157/- 32 o 05/ N and 48 o 13/- 48 o 16/ E). The climate of the study area is semi-arid. Average yearly rainfall is about 325.8 mm with a mean temperature of 24oc. Plant cover, mainly comprises Populus euphratica and Tamarix sp. The both sides of river are similar, so we sampled on one of the two sides. The number of trees and shrubs were sampled using 117 plot (20m × 20 m) along parallel transects (perpendicular to the river). The maximum distance between plots was 0.5 km. The sampling procedure was hierarchically, we considered maximum distance between samples as 0.5 km, but the samples was taken at 250m, 100m, 50m at different location of sampling.We began with an exploratory analysis of patterns in the data. So, classical statistical parameters, i.e. mean, standard deviation, coefficient of variation, minimum and maximum, were calculated using SPSS17 software. Next, we applied geostatistics methods to examine spatial structure in tree distribution.To determining the spatial structure, we calculated the semivariances. Semivariance quantifies the spatial dependence of spatially ordered variable values. The semivariance essentially expresses the average variance of pairs of points at a given distance. Empirical variograms are plots of the semivariances, averaged over distance classes (called lags), against the lag distance. To describe spatial autocorrelation of a variable quantitatively, a (theoretical) variogram model can be fitted to the empirical variogram in order to obtain the model parameters nugget, sill and range.   
3- Results and Discussion
The variograms of Populus euphratica and Lycium shawii were spherical. Tamarix sp. and total of them were exponential. All revealed the presence of spatial autocorrelation. The range of influence was 186 m for Tamarix sp., 362 m for Populus euphratica, 749 m for Lycium shawii and 208 for total. The kriging maps showed spatial variability of them. Typically these structures constitute one source of the nugget variance of the variograms (Rossi, 2003). However, the variograms reported here featured a somewhat high ratio of nugget variance to sill. This result showed that there was the small-scale variability and important proportion of unexplained variance. Spatial distribution of tree speciec may be influenced by factors like gradients in soil organic matter (quantity and or quality) and texture. These factors together with intrinsic population processes constitute proximate controlling factors of population structure.
4- Conclusion
The spatial pattern of total species and Tamarix sp. are similar that was shown in correlation. So Tamarix sp. is a major part of this forest. Populus euphratica is replacing with Lycium shawii. Also the higher distribution is nearby river for all trees and shrub.

Keywords


اخوان، رضا؛ کلاین، کریستوف (1388) کارایی کریجینگ در برآورد و نقشه‌سازی موجودی جنگل‌کاری‌ها (مطالعة موردی: جنگل‌کاری بنشکی رامسر)، تحقیقات جنگل و صنوبر ایران، 17(2)، صص. 318-303.
اخوان، رضا؛ کرمی خرّم‌آبادی، منا؛ سوسنی، جواد (1390) کاربرد دو روش کریجینگ و IDW در پهنه‌بندی تراکم و تاج‌پوشش جنگل‌های شاخه‌زاد بلوط (مطالعة موردی: منطقة کاکارضای خرّم‌آباد لرستان)، جنگل ایران، 3 (4)، صص. 316-305.
افشار، حمید؛ صالحی، محمد حسن؛ محمدی، جهانگرد؛ محنت کش، عبدالمحمد (1388) تغییرپذیری مکانی ویژگی‌های خاک و عملکرد گندم در یک نقشه تناسب کمی(مطالعة مورد: منطقه شهر کیان، استان چهارمحال و بختیاری)، آب‌وخاک (علوم و صنایع کشاورزی)، 23 (1)، صص. 172-161.
پوررضا، مرتضی؛ حسینی، سید محسن؛ زهره وندی، علی اصغر (1391) تغییرات مکانی قطر درختان بنه(Pistacia atlanticaDesf.) در ناحیه زاگرس (مطالعة موردی: پیرکاشان، کرمانشاه)، پژوهش‌های علوم و فناوری چوب و جنگل (علوم کشاورزی و منابع طبیعی)، 19 (3)، صص. 19-1.
حسنی پاک، علی‌اصغر (1377) زمین‌آمار، انتشارات دانشگاه تهران، تهران.
صالحه شوشتری، محمد حسن (1381) گزارش طرح پیش‌آهنگ اصلاح و توسعة بیشه‌زارهای حاشیة رودخانه‌های استان خوزستان با گونه‌های درختی و درختچه‌ای بومی و غیر بومی، سازمان تحقیقات و آموزش کشاورزی.
غلامی، شایسته؛ حسینی، سید محسن؛ محمدی، جهانگرد؛ سلمان ماهینی، عبدالرسول (1390) تغییرات مکانی بایومس ماکروفون و ویژگی‌های خاک در جنگل‌های حاشیة رودخانة کرخه، آب‌وخاک (علوم و صنایع کشاورزی)، 25 (2)، صص. 257-248.
محمدی، جهانگرد (1377) مطالعة تغییرات مکانی شوری خاک در منطقة رامهرمز (خوزستان) با استفاده از نظریّة ژئواستاتیستیک، 1- کریجینگ، علوم و فنون کشاورزی و منابع طبیعی، 2 (4)، صص. 63-49.
محمدی، جهانگرد (1380) مروری بر مبانی ژئواستاتیستیک و کاربرد آن در خاک‌شناسی، علوم خاک‌و‌آب، 15 (1)، صص. 122-99.
محمدی، جهانگرد (1385، الف) پدومتری: آمار کلاسیک (تک‌متغیّره و چندمتغیّره)، جلد اوّل، انتشارات پلک، تهران.
محمدی، جهانگرد (1385، ب) پدومتری: آمار مکانی (ژئواستاتیستیک)، جلد دوّم،انتشارات پلک، تهران.
Allen, T. F. H., Starr, T. B. (1982) Hierarchy: Perspectives for Ecological Diversity, University of Chicago Press, Chicago, Illinois, USA.
Dale, M. R. T. (1999) Spatial Pattern Analysis in Plant Ecology, Cambridge University Press.
Ettema, C. H., Wardle, D. A. (2002) Spatial Soil Ecology, Trends in Ecology and Evolution, 17 (4), pp, 177-183. 
Fernandez-Alaez, C., Fernandez-Alaez, M., Garcia-Criado, F. (2005) Spatial Distribution Pattern of the Riparian Vegetation in a Basin in the NW Spain, Plant Ecology, 179 (1), pp. 31-42.
Ferreira, M. T., Aguiar, F. C., Nogueira, A. C. (2005) Changes in Riparian Woods Over Space and Time: Influence of Environment and Land Use, Forest Ecology and Management, 212 (1-3), pp. 145-159.
Gaston, K. J., Spice, J. I. (1998) Biodiversity: an Introduction, Blackwell Science, MA, USA.
Getzin, S., Dean, Ch., He, F., Trofymow, J. A., Wiegand, K., Wiegand, T. (2006) Spatial Patterns and Competition of Tree Species in a Douglas-Fir Cjoronosequence on Vancouver Island, Ecography, 29, pp. 671-682.
Giese, L. A., Aust, W. M., Trettin, C. C., Kolka, R. K. (2000) Spatial and Temporal Patterns of Carbon Storage and Species Richness in Three South Carolina Coastal Plain Riparian Forests, Ecological Engineering, 15 (1), pp. S157-S170.
Gringarten, E., Deutsch, C. V. (2001) Teacher's Aide, Variogram Interpretation and Modeling, Mathematical Geology, 33 (4), pp. 507-534.
Jimenez, J. J., Rossi, J. P., Lavelle, P. (2001) Spatial Distribution of Earthworm in Acid-Soil Savannas of the Eastern Plains of Colombia, Applied Soil Ecology, 17 (3), pp. 267-278.
Joschko, M., Fox, C. A., Lentzsch, P., Kiesel, J., Hierold, W., Kruck S., Timmer, J. (2006) Spatial Analysis of Earthworm Biodiversity at the Regional Scale, Agriculture Ecosystem & Environment, 112 (4), pp. 367-380.
Leibhold, A. M., Gurevitch, J. (2002) Integrating the Statistical Analysis of Spatial Data in Ecology, Ecography, 25, pp. 553-557.
McBratney, A.B., Laslett, G.M. (1993) Sampling Scheme for Contamined Soil. In: H.J.P. Eijsackers, Integrated Soil and Sediment Research: A Basis for Proper Protection, Kluver Academic Publisher, Dordrecht.
Ngo Bieng, M.A., Perot, T., de Coligny, F., Goreaud, F. (2013) Spatial Pattern of Trees Influences Species Productivity in a Mature Oak–Pine Mixed Forest, European Journal of Forest Research, 132 (5-6), pp. 841-850.
Nielson, D. R., Wendroth, O. (2003) Spatial and Temporal Statistics, Sampling Field Soils and Their Vegetation, Geosciences Publisher.
Singh, S., Malik, Z. A. Sharma, C. M. (2016) Tree Species Richness, Diversity, and Regeneration Status in Different Oak (Quercus spp.) Dominated Forests of Garhwal Himalaya, India, Asia-Pacific Biodiversity, 9 (3), pp. 293-300.
Sun, B., Zhou, S., Zhao, Q. (2003) Evaluation of Spatial and Temporal Changes of Soil Quality Based on Geostatistical Analysis in the Hill Region of Subtropical China, Geoderma, 115 (1-2), pp. 85-99.
Verry, E. S., Hornbeck, J. W., Dolloff, C. A. (2000) Riparian Management in Forests of the Continental Eastern United States, Lewis Publisher.
Warren, M. W., Zou, X. (2002) Soil Macrofauna and Litter Nutrients in Three Tropical Tree Plantations on a Disturbed Site in Puerto Rico, Forest Ecology and Management, 170 (1-3), pp. 161-171.