Application of Collective Intelligence of Artificial Bee Colony Algorithm in Optimization of Estimation and Zoning of Wind Erosion Intensity Using Geomorphological data (Case Study: Birjand Plain’s Drainage Basin, South Khorasan Province)

Document Type : Research Paper

Authors

Abstract

The domain of wind erosion is wider than the other erosion processes, so the use of regional models is inevitable to estimate its intensity. The experimental models depend on components rated in defined ranges evaluating the amount of erosion.  Different experiences and also variety of input components of the model lead to some inconsistency in the results, and decline the reliability of estimation. The aim of this study is to optimize the estimation of wind erosion in Birjand plain through removal and mitigation of the effects of different rating experiences.  In this paper, the data obtained from the experimental model of Iranian Research Institute of Forest and Rangeland (IRIFR) are optimized using collective intelligence artificial bee colony algorithm. To achieve this purpose, after calculating the components of Iranian research institute of forest and rangeland model, the investigated area was divided into pixels of 200×200m. The pixels were located into 82 subdomains by using polar coordinates in order to decrease the computational time. Then optimization of bee colony algorithm was implemented in three steps: (1) the allocation process, (2) the investigation process and (3) conclusion process by the bees. Finally the pixels with greatest potential erosion were identified. About 49% of the area of wind erosion classes in IRIFR model moved to higher erosion classes in bee colony algorithm. Therefore bee colony algorithm is highly sensitive in the classification of wind erosion. The variance test of the erosion classes obtained by the two methods showed more reliability of bee colony results. The results showed the highest erosion rates occurred in the alluvial fan landforms and more than 90 percent of erosion centers are located in the pediment of geomorphologic unit.
Extended Abstract
1-Introduction
 Approximately 28% of the habitable lands of the earth are under the influence of human activities that has led to loss of soil fertility. Wind erosion lead to loss of biodiversity and production capacity of the ground known as desertification. The domain of wind erosion is wider than the other erosion processes, so the use of logical models is inevitable to estimate its intensity. The experimental models depend on components rated in defined ranges, and then evaluate the amount of erosion. Experimental models’ components are rated using field information and expert opinions; due to different expert experiences and also variety of input components, there is no consensus. So one of the fundamental disadvantages of the models is related to rate of input components which leads to different results. The aim of this study is to optimize the estimation of wind erosion in Birjand plain through removal and mitigation of the effects of different rating experiences. The case study in this article is drainage basin of Birjand plain which is located in the South Khorasan province. It covers an area of 3425 square kilometer, of which 980 square kilometer is the plain extent and is very susceptible to wind erosion and the rest is mountainous. The average annual precipitation in the plain over a period of 50 years equals to 177 mm and its climate is generally dry.
2- Materials and Methods
 In order to study wind erosion, erosion models with different goals, such as Successive approximation of erosion and designing of erosion control tools, are used. In this paper, the data obtained from the experimental model of forests and rangelands of Iran (IRIFR) is optimized using collective intelligence artificial bee colony algorithm. To achieve this purpose, after calculating the components of Iranian research institute of forest and rangeland model, the investigated area was divided into pixels of 500 and in order to decrease the computational time, the pixels were located into 82 subdomains by using polar coordinates. Then optimization of bee colony algorithm was implemented in three steps: (1) the allocation process, (2) the investigation process and (3) conclusion process by the bees. Finally pixels with greatest potential erosion were identified. The center of erosion in the investigated area, that is the critical part of the region in terms of erosion, was also identified. Finally using multivariable statistical methods, the centers and spatial pattern of zones which were obtained by both models were compered.
3- Results and Discussion
 About 47% of the area of wind erosion classes in IRIFR model moved to higher erosion classes in bee colony algorithm. Therefore bee colony algorithm is highly sensitive in the classification of wind erosion. Although the area of output zones obtained by the two models was very similar in both of them (about 78%). But there is significant difference in terms of the spatial pattern of erosion classes. The variance test of the erosion classes obtained by the two methods showed significant difference. The lower variance amount of classes obtained by bee colony algorithm showed that the results of this method have more reliability in wind erosion classification.
4- Conclusion
Identification of 82 critical wind erosion centers in the investigated area and its agreement with real evidence shows the importance of this method in investigating the effective wind erosion components. The results showed the highest erosion rates occurred in the alluvial fan landforms and more than 90 percent of erosion centers are located in the pediment of geomorphologic unit.
 
 
 

Keywords


اختصاصی، محمدرضا؛ احمدی، حسن (1375) معرّفی دو روش جدید برآورد رسوب در فرسایش بادی، مجموعه مقالات دوّمین همایش ملّی بیابان‌زایی و روش‌های مختلف بیابان‌زدایی، انتشارات مؤسّسة تحقیقات جنگل‌ها و مراتع.
اختصاصی، محمدرضا؛ احمدی، حسن (1376) روش تجربی برآورد رسوب فرسایش بادی، منابع طبیعی ایران، ص. 51.
اشتوکلین (1368) زمین‌شناسی و زمین‌ساخت فلات ایران، ترجمة صادق حداد کاوه و حسن حسنعلی‌زاده، انتشارات وزارت علوم و تحقیقات و فناوری، ص. 108. تهران.
امیراحمدی، ابولقاسم؛ ثقفی، مهدی؛ ربیعی، مریم (1390) تحلیل و طبقه‌بندی چندمتغیّره برای مدل‌سازی متغیّرهای مؤثّر بر شکل هندسی مخروط‌افکنه‌های دامنة شمالی کوهستان باقران (جنوب شهر بیرجند)، جغرافیا و برنامه‌ریزی محیطی، 44، صص. 90-73.
بخشنده­ مهر، لیلا؛ سلطانی، سعید؛ سپهر، عادل (1392) ارزیابی وضعیّت فعلی بیابان‌زایی و اصلاح مدل مدالوس در دشت سگزی اصفهان، نشریه مرتع و آبخیزداری، مجلّه منابع طبیعی ایران، 66 (1)، صص. 40-27.
پهلوان روی، احمد (1391) ارزیابی فرسایش و رسوبات بادی با استفاده از مدل IRIFR در منطقة زهک دشت سیستان. جغرافیا و توسعه، 10 (27)، صص. 140-127.
ثقفی، مهدی (1389)، مطالعات ژئومورفولوژی حوضه‌های دامنه شمالی کوهستان باقران، طرح پژوهشی دانشگاه پیام نور.
ثقفی، مهدی؛ امیراحمدی، ابوالقاسم؛ ربیعی، مریم (1395)،تشخیص واکنش­های ژئومورفیک مخروط­ افکنه­ های جنوب دشت بیرجند به فعّالیّت­ های تکتونیکی و تغییرات آب­وهوایی با استفاده از داده­ های میدانی، جغرافیا و برنامه­ ریزی، 20 (57)، صص. 114-97.
ثقفی، مهدی؛ ربیعی گسک، مریم (1394)، تحلیل فضایی ریسک‌پذیری توسعه شهر بیرجند از جنبة محدودیت‌های طبیعی و طبقه‌بندی آن به کمک تکنولوژی اطّلاعات ماهواره‌ای و سیستم اطّلاعات جغرافیایی، طرح پژوهشی، جمعیّت هلال احمر استان خراسان جنوبی.
جباری، ایرج؛ ثقفی، مهدی (1383) پهنه‌های حسّاس به فرسایش بادی حوضه آبریز دستگرد بیرجند، فضای جغرافیایی، 11، صص.90-73.
حبیبی، علیرضا؛ شاد فر، صمد؛ صادقی، معصومه (1393) بررسی شدّت بیابان‌زایی در رخساره‌های ژئومورفولوژی با استفاده از GIS در استان خوزستان، نشریه تحقیقات کاربردی علوم جغرافیایی، 14 (32)، صص. 159-141.
خطیب، محمد مهدی؛ زرین‌کوب، محمدحسین (1380) کرونولوژی ساختاری و مراحل کانی­زایی لیستونیت در پهنه برشی آرگین، مجموعه مقالات پنجمین همایش انجمن زمین‌شناسی ایران، دانشگاه تهران.
خطیب، محمدمهدی (1368)، تحلیل ساختاری کوه‌های جنوب بیرجند، پایان‌نامه کارشناسی ارشد، رشتة زمین‌شناسی، گرایش تکتونیک، استاد راهنما: میرعلی‌اکبر نوگل سادات، دانشگاه تربیت مدرس.
ربیعی، مریم (1390)، بررسی نقش مخروط‌ افکنه‌های دامنه شمالی ارتفاعات باقران در منابع آب زیرزمینی دشت بیرجند، پایان‌نامه کارشناسی ارشد، رشته جغرافیا، گرایش ژئومورفولوژی در برنامه‌ریزی محیطی، استاد راهنما: دکتر ابوالقاسم امیراحمدی، دانشگاه حکیم سبزوار.
مصباح­ زاده، طیبه؛ احمدی، حسن؛ زهتابیان، غلامرضا؛ سرمدیان، فریدون (1389) ارزیابی شدّت فرسایش بادی با بهره‌گیری از مدل IRIFR. E.A1 (بررسی موردی: ابوزیدآباد کاشان)، نشریه مرتع و آبخیزداری، مجلّه منابع طبیعی ایران، 63 (3)، صص. 415-399.
Blanka, V., Mezosi, G., Meyer, B. (2013) Projected Changes in the Drought Hazard in Hungary Due to Climate Change, Idojaras: Q. J. Hungarian Meteorol. Serv, 117, pp. 219–237.
Bohner, J., Schafer, W., Conrad, O., Gross, J., Ringeler, A. (2003) The WEELS Model: Methods, Results and Limitations, CATENA, 52 (3-4), pp. 289-308.
Boulghobra, N., Hadri, T., Bouhana, M. (2014) Using Landat Imagery for Monitoring the Spatiotemporal Evolution of Sanding in Dryland, the Case of IN-SALAH the Tidikelt (Southern Algerian SAHARA),Geographia Technica, 9 (1), pp. 1- 9.
Callot, Y., Marticorena, B., Bergametti, G. (2000) Geomorphologic Approach for Modelling the Surface Features of Arid Environments in a Model of Dust Emissions: Application to the Sahara Desert, Geodinamica Acta, 13 (5), pp. 245-270.
Carter, D. (1985). Wind erosion research techniques workshop, Esperance, WA.
Coen, G. M., Tatarko, J., Martin, T. C., Cannon, K. R., Goddard, T. W., Sweetland, N. J. (2004) A Method for Using WEPS to Map Wind Erosion Risk of Alberta Soils, Environmental Modelling & Software, 19 (2), pp. 185-189.
Eswaran, H., Lal, R., Reich, P. F. (2001). Land Degradation. An Overview Conference on Land Degradation and Desertification. Khon Kaen, Thailand: Oxford Press, New Dehli, India, 23(2), pp. 20-35.
Goudie, A. S., Middleton, N. J. (2006) Desert Dust in the Global System, Springer, Berlin, Germany.
Griffin, D. W., Garrison, V. H., Ferman, J. R., Shinn, E. A. (2001) African Desert Dust in the Caribbean Atmosphere: Microbiology and Public Health, Aerobiologia, 17, pp. 203 - 213
Karaboga, D., Basturk, B. (2007) A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, Global optimization, 39 (3), pp. 459-471.‏
Lawrence, H. (2004) Evaluation of the Wind Erosion Prediction System (WEPS) Erosion Sub Model on Cropland Fields, Environmental Modeling & Software, 19, pp. 171–176.
Marticorena, B., Bergametti, G. (1995) Modeling the Atmospheric Dust Cycle: 1. Design of a Soil-Derived Dust Emission Scheme, Geophysical Research, 100 (D8), pp. 415-430.
Mezosi, G., Meyer, B. C., Loibl, W., Aubrecht, C., Csorba P., Bata, T. (2013) Assessment of Regional Climate Change Impacts on Hungarian Landscapes, Reg. Environ. Change, 13, pp. 797–811.
Mezosi, G., Szatmari, J. (1998) Assessment of Wind Erosion Risk on the Agricultural Area of the Southern Part of Hungary, Hazardous Materials, 61(1-3), pp. 139-153.
Mitchell, M. (1998) An introduction to genetic algorithms, MIT press, USA.‏
Nichols, K. K., Bierman, P. R., Hooke, R. L., Clapp, E. M., Caffee, M. (2002) Quantifying Sediment Transport on Desert Piedmonts, Geomorphology, 45, pp. 105-125.
Oldeman, L. R. (1994) The Global Extent of Soil Degradation. In: D. J. Greenland, Szabolcs, I. (Editor), Soil Resiliance and Sustainable Land Use: Proceedings of a Symposium Held in Budapest, 28 September to 2 October 1992, Including the Second Workshop on the Ecological Foundations of Sustainable Agriculture (WEFSA II), CAB International, pp. 99-118.
Oldeman, L. R., Hakkeling, R. T. A., Sombroek, W. G. (1991) World Map of the Status of Human-Induced Soil Degradation, an Explanatory Note. Second Revised Edition. ISRIC and UNEP, 34 p.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., Gill, T. E. (2002) Environmental Characterization of Global Sources of Atmospheric Soil Dust Identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product, Reviews in Geophysics, 40(1), pp. 2-31.
Raiman, O. (1991). Order of magnitude reasoning. Artificial intelligence, 51(1), pp. 11-38.‏
Sadeghi Ravesh. M. H,  Ahmadi, H., Zehtabian, Gh. R, Tahmoures, M. (2013) Application of Numerical Taxonomy Analysis in Sustainable Development Planning of Combating Desertification, Desert 17, pp. 147-159.
Smith, J. L., Lee, K. (2003) Soil as a Source of Dust and Implications for Human Health, Advances in Agronomy, 80, pp. 1-32.
Thomas, D. S. G. (2000) Arid Zone Geomorphology: Process, Form and Change in Drylands, John Wiley & Sons, London.
Washington, R., Todd, M., Middleton, N.J., Goudie, A.S. (2003) Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations, Annals of the Association of American Geographers, 93 (2), pp. 297-313.
Willmott, C. J., Matsuura, K. (2005) Advantages of the Mean Absolute Error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Research, 30 (1), pp. 79-82.
Zobeck, T. M., Parker, N. C., Haskell, S., Guoding, K. (2000) Scaling up from Field to Region for Wind Erosion Prediction Using a Fieldscale Wind Erosion Model and GIS, Agr. Ecosyst. Environ, 82, pp. 247–259.