Ahmed, I., Sharma, V., Kumar, R., Lal, D., Bhandari, R., & Chand, P. (2023). Assessment of Existing Himalayan Glacier Inventories for Glacier Studies: A Case Study from the Ravi Basin of North-Western Himalaya (India).
Climate Change Adaptation, 11. 109-134.
https://doi.org/10.1007/978-3-031-24659-3_6
Altınay, O., Sarıkaya, M. A., & Çiner, A. (2020). Late-glacial to Holocene glaciers in the Turkish mountains.
Mediterranean Geoscience Reviews, 2, 119–133.
https://doi.10.1007/s42990-020-00024-7
Amirahmadi, A., Goli Mokhtari, L., & Naemi Tabar, M. (2023). Investigation of the effects and evidence of late Quaternary glaciers on the Binaloud Heights.
Geographical Science, 23(70), 249–267.
https://doi.org/10.61186/jgs.23.70.249. (In Persian)
Beranvand, H., & Seif, A. (2022). Morphometric parameters of glacial cirques in the heights of central Kerman Province.
Geography, 19(71), 129-149.
https://mag.iga.ir/article_248855. html. (In Persian)
Bieranvand, H., & Seif, A. (2020). The analysis of morphometric parameters of the remains of glacial cirques in JabalBarez altitudes in Würm.
Geography and Development, 18(60), 219-238.
https://doi.org/10.22111/j10.22111.2020.5986. (In Persian)
Borah, S. B., Das, A. K., & Hazarika, N. (2022). Monitoring and assessment of glaciers and glacial lakes: Climate change impact on the Mago Chu Basin.
Regional Environmental Change, 22, 124.
https://doi.10.1007/s10113-022-01984-2
Chang, L., Hoogakker, B.A., & Heslop, D. (2023). Indian Ocean glacial deoxygenation and respired carbon accumulation during mid-late Quaternary ice ages.
Nature Communications,
14, 4841.
https://doi.org/10.1038/s41467-023-40452-1
Chen, Xj., Wang, J., & Zou, Ly. (2023). Ice flux of alpine glaciers controls erosion and landscape in the Nianbaoyeze Shan, northeastern Tibetan Plateau
. Journal of Mountain Science, 20, 1884–1899.
https://doi.org/10.1007/s11629-022-7769-8
Das, C., Sarmah, D. J., & Das, M. (2025). Assessing future glacial lake formation and GLOFs susceptibility in the Mago Watershed, Arunachal Pradesh, India.
Journal of Earth System Science, 134, 111.
https://doi.10.1007/s12040-025-02561-x
Ghazanfarpour, H., Pourkhosravani, M., & Sheykhshariati Kermani, B. (2020). Reconstruction of the least phase Quaternary climate condition in Shahdad River Basin.
Geographical Research, 35(4), 343-354.
http://georesearch.ir/article-1-944-fa.html. (In Persian)
Goorabi, A., Hosseini, S. M., & Kamrani, P. (2023). Monitoring of debris-glacial floods by radar interferometry (Case study: Debris-glacial flood of 2022 in Oshtorankuh East Lorestan).
Physical Geography Research, 54(4), 497-511.
https://doi.org/10.22059/jphgr.2023.355408. 1007750. (In Persian)
Hu, J., Yao, X., & Zhang, C. (2024). Spatial and temporal changes of glaciers and glacial lakes in the Northern Tianshan Mountains over the past 30 years.
Journal of Geographical Sciences, 34, 1857–1880.
https://doi.10.1007/s11442-024-2274-3
Issac, I., Goel, N. K., & Schwanghart, W. (2025). Comprehensive analysis of hydrological and glacial dynamics in the Himalayas: Addressing glacial lake outburst flood risks in hydropower development.
Natural Hazards, 121, 5571–5588.
https://doi.10.1007/s11069-024-07042-w
Jacquemart, M., Welty, E., Gastaldello, M., & Carcanade, G. (2025). glenglat: A database of global englacial temperatures.
Earth System Science Data, 17, 1627–1666.
https://doi.10.5194/essd-17-1627-2025
Jafari, G. H., & Hazrati, N. (2018). Investigation of the domain of Quaternary glacial erosion in the northern geomorphic unit of Iran.
Quaternary Journal of Iran, 4(1), 67-81.
https://doi.org/10.22034/irqua.2018.701988. (In Persian)
Jafari, G. H., & Hazrati, N. (2019). The boundary of the Quaternary glacial morphogenes system in the water basins of the northwest of Iran.
Journal of Hydrogeomorphology, 6(18), 79-96.
https://hyd.tabrizu.ac.ir/article_8973.html. (In Persian)
Jafari, G. H., & Hazrati, N. (2020). Best method in estimating the equilibrium-line altitude of late Quaternary glaciers in Iran.
Geography and Environmental Hazards, 9(1), 239-262.
https://doi.org/10.22067/geo.v0i0.78427. (In Persian)
Jafari, G., & Nasery, F. (2021). Analysis of physiographic characteristics of Zagros sub-basins in relation to karstization conditions.
Geography and Environmental Planning, 32(1), 25-44.
https://doi.org/10.22108/gep.2020.124848.1350. (In Persian)
Khadka, N., Chen, X., & Sharma, S. (2023). Climate change and its impacts on glaciers and glacial lakes in Nepal Himalayas.
Regional Environmental Change, 23, 143.
https://doi.10.1007/s10113-023-02142-y
Kleber, G. E., Hodson, A. J., & Magerl, L. (2023). Groundwater springs formed during glacial retreat are a large source of methane in the high Arctic.
Nature Geoscience, 16, 597–604.
https://doi.10.1038/s41561-023-01210-6
Kunmar, P., Rana, A. S., & Kumar, V. (2025). Glacial landforms and geometric transformations: Tracing the history of Pensilungpa and Durung-Drung glaciers in Suru and Doda River valleys, Western Himalaya, Ladakh.
Environmental Monitoring and Assessment, 197, 272.
https://doi.10.1007/s10661-025-13727-x
Li, H., Liu, S., & Hu, K. (2024). Differential depression of the glacier equilibrium-line altitude in the Yarlung Zangbo Downstream Basin in the Last Glacial Maximum compared to the pre-industrial era.
Journal of Geographical Sciences, 34, 1157–1173.
https://doi.10.1007/s11442-024-2243-x
Mohanty, L. K., & Maiti, S. (2022). Glacial lake formation probability mapping in the Himalayan glacier: A probabilistic approach.
Journal of Earth System Science, 131, 54.
https://doi.10.1007/s12040-021-01772-2
Naemi Tabar, M., & Zanganeh Asadi, M. (2022). Investigation of thermal and humidity anomalies between the present and Pleistocene and reconstruction of climatic conditions using geomorphic evidence (Case study: Northeastern heights of Binalood).
Geographical Planning of Space Quarterly Journal, 12(2), 99-115.
https://doi.org/10.30488/gps.2022.273894.3369. (In Persian)
Nouhi, M., Madadi, A., & Aedini, M. (2019). Role of Quaternary tectonic and climatic factors on the geomorphological changes of Meshkin Shahr depression alluvial fans.
Geographical Research, 34(2), 281-292.
http://georesearch.ir/article-1-694-fa.html. (In Persian)
Ramesht, M. H., Lajevardi, M., Lashkari, H., & Mahmoudi Mohammad Abadi, T. (2011). Study of natural glacial evidences in Mahan (Case study: Glacier of Tigrany Mahan Basin).
Geography and Environmental Planning, 22(2), 59-78.
https://gep.ui.ac.ir/article_18494.html?lang=en. (In Persian)
Ritse, V., Hazarika, N., & Kulnu, A. S. (2025). Shrinking Himalayan glaciers: Glacier inventory, glacial cover mapping and changes in Eastern Himalayas, India.
Journal of Earth System Science, 134, 27.
https://doi.10.1007/s12040-024-02490-1
Rounce, D. R., Hock, R., & Maussion, F. (2023). Global glacier change in the 21st century: Every increase in temperature matters.
Science, 379, 78–83.
https://doi.10.1126/science.abo1324
Sain, K. (2022). Need for development of AI-based integrated warning system (IWS) for mitigation of glaciers/glacial-lakes related hazards with special reference to Uttarakhand Himalaya.
Journal of the Geological Society of India, 98, 1012–1014.
https://doi.10.1007/s12594-022-2109-8
Salehipour, A. R., Lak, R., & Yamani, M. (2019). Heinrich climatic events in north west of Iran in late Pleistocene.
Geography and Development, 17(55), 109-132.
https://doi.org/10.22111/gdij.2019.4582. (In Persian)
Schaffer, N., & MacDonell, S. (2022). A framework to classify glaciers for water resource evaluation and management in the Southern Andes.
The Cryosphere, 16, 1779–1791.
https://doi.10.5194/tc-16-1779-2022
Seydi, M., Omidvar, K., Mozafari, G., & Mazidi, A. (2025). Analysis of the consequences of climate change on the characteristics of middle Zagros snow cover using remote sensing data.
Applied Researches in Geographical Sciences, 25(77), 22-43.
https://doi.org/10.61186/jgs.25.77.9. (In Persian)
Sheshangosht, S., Agamohammadi, H., Karimi, N., Azizi, Z., & Vahidnia, M. H. (2024). Use of UAVs and LiDAR to identify the spatiotemporal elevation changes of AlamKooh Glacier.
Scientific-Research Quarterly of Geographical Data (SEPEHR), 33(130), 79-98.
https://doi.org/10.22131/sepehr.2024.2008881.3009. (In Persian)
Spreafico, M.C., Sternai, P. & Agliardi, F. (2021). Paraglacial rock-slope deformations: sudden or delayed response? Insights from an integrated numerical modelling approach.
Landslides, 18, 1311–1326.
https://doi.org/10.1007/s10346-020-01560-x
Taheri, H. (2022). Investigation of Quaternary glacial geomorphological evidence (Case study: Koohrang River Basin) [Master's thesis, Khorramshahr University of Marine Science and Technology]. (In Persian)
Tavus, B., Kocaman, S., & Nefeslioglu, H.A. (2024). Analysing slope dynamics of Kaleköy (Türkiye) dam reservoir with Sentinel-1 SAR time series and Sentinel-2 spectral indices.
Environmental Earth Sciences, 83, 510.
https://doi.org/10.1007/s12665-024-11807-8
Tembotov, R., Gangapshev, A., & Gezhaev, A. (2025). Assessment of radioactivity of cryoconites from glaciers of Elbrus Mountain and glacial soils of Elbrus region, Russia. International
Journal of Environmental Science and Technology, 22, 8057–8068.
https://doi.10.1007/s13762-024-06179-2
Valle, B., Gobbi, M., & Tognetti, M. (2022). Glacial biodiversity of the southernmost glaciers of the European Alps (Clapier and Peirabroc, Italy).
Journal of Mountain Science, 19, 2139–2159.
https://doi.10.1007/s11629-022-7331-8
Vemuri, S., Gautam, D., & Gandhi, S. (2024). Glacial retreat delineation using machine and deep learning: A case of a lower Himalayan region.
Journal of Earth System Science, 133, 82.
https://doi.10.1007/s12040-024-02285-4
Yamani, M. (2007). Geomorphology of Zardkuh glaciers (Study of geomorphological forms and their extent).
Geographical Research Journal,
38(59), 125-142.
https://jrg.ut.ac.ir/article _18525.html. (In Persian)
Yongping, Q., & Jianhua, H. (2025). Spatial–temporal evolution of glacial lakes and multi-phase geological hazards susceptibility evaluation of Midui Gully, Xizang.
Environmental Earth Sciences, 84, 301.
https://doi.10.1007/s12665-025-12315-z