Document Type : Research Paper
Authors
1 Department of Physical Geography, Faculty of Literature and Humanities, University of Zanjan, Zanjan, Iran.
2 Department of Geography, Faculty of Literature and Humanities, University of Zanjan, Zanjan, Iran.
Abstract
Keywords
Main Subjects
Albugami, S., Palmer, S., Cinnamon, J., & Meersmans, J. (2019). Spatial and Temporal Variations in the Incidence of Dust Storms in Saudi Arabia Revealed from In Situ Observations.Geosciences,9(4), 162-173. doi: 10.3390/geosciences9040162.
Alizadeh choobari, O., & Najafi, M.S. (2017). Trends and changes in air temperature and precipitation over different regions of the earth and space physics, 43(3), 569-584. doi: 10.22126/ges.2020.4227.2057. (In Persian).
Ansari, M., Ahmadi, M., & Goudarzi, Gh. (2024). Investigation of Temporal – spatial variations of particulate matter (PM2.5 and PM10) in Tehran city Using GIS (2013-2020). Journal of Environmental Sciences and Technology, 26(2), 127-140. doi: 10.30495/jest.2022.61846. 5441. (In Persian).
Asadi Oskouei, E., Godarzy, L., & Helali, J. (2022). Introducing the SMAP L4 Products and Investigating the Spatio-Temporal Variability of Soil Moisture in Iran. Nivar,46 (116-117), 14-27. doi: 10.30467/nivar.2022.315991.1206. (In Persian).
Azari, L., Naji meidani, A., Salehnia, N. (2024). Predicting the Impact of Climate Conditions on the Economic Production of Iranian Provinces with The Approach of Random Forest Algorithm. Quarterly Journal of Applied Theories of Economics, 11(2), 1-34. doi: 10.22034/ecoj.2024.60935.3292. (In Persian).
Banks, J. R., & Brindley, H. E. ( 2013). Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East. Remote Sensing of Environment, 128(2), 58-73. doi: 10.1016/j.rse.2012.07.017.
Bashar Doost, A., & Mesgari, M. S. (2024). Spatial Modeling of Airborne Particles (PM2.5 and PM10) in Tehran city Using Convolutional Neural Network. Nivar, 48(124-125), 31-49. doi: 10.30467/nivar.2024.430255.1276 .(In Persian).
Basheer, S., Rashid, H., Nasir, A., & Nawaz, R.A. (2019). Spatial and temporal variability analysis of PM2.5 concentration in Lahore city. Environmental Contaminants Reviews. 2(1),6-10. doi: 10.26480/ecr.01.2019.06.10.
Bayat, A. (2013). Classification of atmospheric aeronautics using polarized solar shader data, PhD thesis, Zanjan University of Postgraduate Studies. (In Persian).
Bian, H., Colarco, P. R., Chin, M., Chen, G., Rodriguez, J. M., Liang, Q., & Wisthaler, A. (2013). Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign. Atmospheric Chemistry and Physics, 13(9), 4707-4721. doi: 10.5194/ acpd-12-8823-2012
Borzou, F., Zolfaghari, H., Masoompour Samakosh, J., & Sahraei, J. (2021). Spatial Analysis of Dust Storms in Iran based on Climatic and Vegetation Characteristics. Geography and Environmental Sustainability, 11(1), 1-23. doi: 10.22126/ges.2021.6478.2395.(In Persian).
Buchard, V., Colarco, P. R., da Silva, A. M., Randles, C. A., Kawa, S. R ., & Hair, J. W. (2016). Evaluation of PM2.5 surface concentrations simulated by version 1 of the NASA MERRA aerosol reanalysis. Atmospheric Environment, 140, 1 10 .doi: 10.1016/j. atmosenv.2016.05.03
Cai, K., Zhang, Q., Li, S., Li, Y., & Ge, W. (2018). Spatial–Temporal Variations in NO2and PM2.5 over the Chengdu–Chongqing Economic Zone in China during 2005–2015 Based on Satellite Remote Sensing. Sensors, 18(11),1-16. doi: 10.3390/s18113950
Cakmur, R. V., Miller, R. L., & Torres, O. (2004). Incorporating the effect of small scale circulations upon dust emission in an atmospheric general circulation model. Journal of Geophysical Research: Atmospheres, 109(7),2-10. doi: 10.1029/2003JD004067
Cheng, B., Ma, Y., Zhao, Y., Zhao, Y., Qin, P., Feng, F., Liu, Z., Wang, W., & Zhang, Y. (2024). Influence of topography and synoptic weather patterns on air quality in a valley basin city of Northwest China. The Science of The Total Environment, 934(4), 173362. doi: 10.1016/j. scitotenv.2024.173362.
Colarco, P., da Silva, A., Chin, M., & Diehl, T. (2010). Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth. Journal of Geophysical Research: Atmospheres, 115(D14). doi: 10.1029/2009JD012820
Dadashi-Roudbari, A. (2019). Analysis of the temporal-spatial variability of vertical and horizontal patterns of dust and evaluation of its climatic feedbacks in Iran. PhD thesis in Meteorology, Shahid Beheshti University. (In Persian).
de Leeuw, G., L. Sogacheva, E., Rodriguez, K., Kourtidis, A.K., Georgoulias, G., Alexandri, V Amiridis., E. Proestakis, E., & Marinou, Y. Xue. (2018). Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns. Atmospheric Chemistry and Physics, 18(3):1573-1592. doi: :10.5194/acp-18-1573-2018
Di, M., Liu, Y., Zhang, L., & Wang, X. (2019). Multimodel simulations of a springtime dust storm over northeastern Asia: Model intercomparison and source attribution. Geoscientific Model Development, 12(11), 4603–4625. doi: 10.5194/gmd-12-4603-2019gmd.copernicus.org
Ebrahimikhusfi, Z. (2020). Analysis of Temporal Changes of Dust Events and Determination of the Contribution of Climate Factors Affecting it in Arid Regions Based on the Ridge Regression Analysis (A Case Study: Yazd City). Journal of Hydrology and Soil Science, 24(1), 145-158. doi: 10.47176/jwss.24.1.41171. (In Persian).
Farzanehpey, F., Ranjbar-Fordoe, A., Khosravi, H., & Mosavi, S. H. (2024). Evaluation of dust changes and its relationship with temperature (Case study: Khuzestan province). Integrated Watershed Management, 4(1), 16-29. doi: 10.22034/iwm.2024.2014553.1112. (In Persian).
Feiznia, S., Roghani, R., & Soltani, S. (2019). Seasonal and spatial variations of PM2.5, PM10 and TSP particles in the suburbs of Isfahan and their relationship with meteorological parameters. Rangeland and Watershed Management (Iranian Natural Resources), 73(2), 393-404. doi: 10.22059/jrwm.2018.250800.1220. (In Persian).
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., & Zhao, B. (2017).The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. doi: 10.1175/JCLI-D-16-0758.1.
Ghanghermeh, A., & Shokrollahi, D. (2023). An investigation of the relationship between atmospheric boundary layer height changes and air pollution variables in the cities of Isfahan. Climate Change Research, 3(12), 69-90. doi: 10.30488/ccr.2023.386658. 1117.(In Persian).
Haghighi, E., Gholizadeh, M. H., Doostkamian, M., & Ghaderi, F. (2017). Nature and structure of the atmospheric circulation in pervasive rains of spring, Iran. Physical Geography Research, 49(3), 523-539. doi: 10.22059/jphgr.2017.218909.1006955 . (In Persian).
HKhoshakhlagh, F., Azizi, Gh., & Rahimi, M. (2012). The Synoptic Patterns Of Wintertime Drought And Wet Period In Southwestern Of Iran. Journal Of Geographical Sciences, 12(25), 57-77. http://jps.khu.ac.ir/article-1-652-fa.html. (In Persian).
Höflinger, Wilhelm., & Laminger, Thomas. (2017). PM2.5 or respirable dust measurement and their use for assessment of dust separators. Journal of the Taiwan Institute of Chemical Engineers. 94. 10.1016. doi: 10.1016/j.jtice.2017.07.035
Hu, K., Kumar,R.K., Kang,N., Boiyo,R., & Wu,J. (2018). Spatiotemporal characteristics of aerosols and their trends over mainland China with the recent Collection 6 MODIS and OMI satellite datasets. Environmental Science and Pollution Research. 25(7): 6909-6927. doi: 10.1007/s11356-017-0715-6
Huang, R. J., Zhang, Y., & Bozzetti, C. (2021). Nighttime temperature and surface inversions as drivers of PM2.5 pollution in semi-arid regions. Environmental Science & Technology, 55(6), 3474–3483. https://www.nature.com/articles/nature13774
Hughes, A., Brown, T., & Silva, M. (2022).Comparison of Random Forest and Support Vector Machine classifiers for satellite image classification. Remote Sensing, 14(8), 1552. doi: 10.3390/rs14081552
Hussain, A., Mir,H., & Afzal, M. (2005). Analysis of dust storms frequecny over pakistan during 1961-2000 . Journal of Meteorology 2(3).https://www.researchgate.net/publication/ 285097369.
Javadi, P., Asadi, H. & Vazifehdoust, M. (2022). Prediction of Spatial Variations of Soil Moisture Using Random Forest Method and Environmental Features derived from Satellite Images in Marghab Basin of Khuzestan. Iranian Journal of Soil and Water Research, 52(11), 2859-2874. doi: 10.22059/ijswr.2021.331962.669094 (In Persian).
Kahrari, P., Khaledi, S., Keikhosravi, G., & Alavi, S. J. (2025). Investigating the effects of criteria air pollutants and meteorological parameters on the change of black carbon concentration in Tehran and Tabriz. Journal of Natural Environmental Hazards, 14(43), 35-58. doi: 10.22111/ jneh.2024.47935.2028. (In Persian).
Kang, L., Huang, J., Chen, S., & Wang, X. (2016). Long-term trends of dust events over Tibetan Plateau during 1961–2010. Atmospheric environment. 125(2), 188-198. doi: 10.1016/j. atmosenv.2015.10.085.
Kaskaoutis, D. G., Nastos, P. T., Kosmopoulos, P. G., Kambezidis, H. D., Kharol, S. K., & Badarinath, K. V. S. (2010). The aura–OMI aerosol index distribution over Greece. Atmospheric Research. 98(1), 28-39. doi: 10.1016/j.atmosres.2010.03.018
Katorani, S., Ahmadi, M., & Dadashi-Roudbari, A. (2024). Investigating the Spatial Distribution and Trend of Dust Mass Density in West Asia and Its Relationship with Climate Variables. Water and Soil, 38(3), 427-411. doi: 10.22067/jsw.2024.86233.1367. (In Persian).
Liu, C., Yin, Z., He, Y., & Wang, L. (2022). Climatology of dust aerosols over the Jianghan Plain revealed with space-borne instruments and MERRA-2 reanalysis data during2006–2021. Remote Sensing, 14(17), 44-14. doi: 10.3390/rs14174414.
Liu,J., & Ding, W.(2023). Spatial and temporal distribution of PM2.5 and O3 in north China from 2011 to 2020: Patterns and influence mechanisms. Atmospheric Pollution Researc,14)11(, 101906, 1309-1042, doi: 10.1016/j.apr.2023.101906.
Mahmoudi, L., & Ikegaya, N. (2023). Identifying the distribution and frequency of dust storms in Iran based on long‑term observations from over 400 weather stations. Sustainability, 15(16), 12294. doi: 10.3390/su151612294
Mathew, B. B., Singh, H., Biju, V. G., & Krishnamurthy, N. B. (2017). Classification, Source, and Effect of Environmental Pollutants and Their Biodegradation. Journal of Environmental Pathology Toxicology and Oncology 36(1),5. doi: 10.1615/JEnvironPatholToxicolOncol. 2017015804
Middleton, N. J., & Sternberg, T. (2013). Climate hazards in drylands: A review. Earth-Science Reviews, 126, 48-57. doi: 10.1016/j.earscirev.2013.07.008.
Movahedi, S., Soltanian, M., Halabian, A.h., & Porshehbazi, J. (2013). Analysis of precipitation trends in the central desert of Iran during the period 1951-2007. Journal of Desert Ecosystem Engineering, 2(2), 47-56, https://deej.kashanu.ac.ir/article_ 112496.html.-(In Persian).
Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69-71. PMID: 23638278; PMCID: PMC3576830.
Omidvar, K., narangifard, M., & Hatami Bahman Beiglou, K. (2014). Identification CirculationsPatterns of DustPollutantDays with Applying ClusteringAnalysis in Shiraz. Journal of Natural Environmental Hazards, 3(4), 81-93. doi: 10.22111/jneh.2014.2470. (In Persian).
Rahimian, M., Poormohammadi, S., Hasheminejhad, Y. & Meshkat, M. (2013). Impact of Climate Change on Salinization in Iran. Iranian Journal of Soil Research, 27(1), 1-11. doi: 10.22092/ijsr.2013.126216.(In Persian).
Raispour, K. (2021). Evaluation of Spatiotemporal Column Particulate Matter Concentration (PM2.5) Due to Dust Events in Iran Using Data from NASAN / MERRA-2 Reanalysis Model. Journal of the Earth and Space Physics, 47(2), 333-354 . doi: 10.22059/jesphys.2021.316499. 1007273. (In Persian).
Rangzan, K., Zarasvandi, A., kabolizadeh, M., mohammadi, S., & mayahi, J. (2022). Spatiotemporal evaluation of PM2.5 concentration in Khuzestan province and examining the factors affecting it. Environmental Sciences, 20(2), 199-222 . doi: 10.52547/envs.2022.33613. (In Persian).
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., & Woollen, J. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24(14), 3624-3648. doi: 10.1175/JCLI-D-11-00015.1.
Rossel, R. V., McBratney, A. B. (2008). Diffuse reflectance spectroscopy as a tool for digital soil mapping. In Digital soil mapping with limited data. 165-172. Springer:Dordrecht. doi: 10.1007/978-1-4020-8592-5_13.
Shamsoddini, A., & Ahmadi, W. (2020). Spatio – Temporal Estimation of Carbon Monoxide and Nitrogen Dioxide based on Remote Sensing Data and Ancillary Data in Tehran. Geography and Environmental Sustainability, 10(3), 107-124. doi: 10.22126/ges.2020.4227.2057. (In Persian).
Shao, Y., Ishizuka, M., Mikami, M., & Leys, J. (2011). Parameterization of size-resolved dust emission. Geoscientific Model Development, 4(5), 853–868. doi: 10.1029/2010JD014527.
Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., & Yoon. S. (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2(4): 181-204. doi: 10.1016/j.aeolia.2011.02.001
Shin, S. K., Müller, D., Lee, K. H., Shin, D., Kim, Y. J., & Noh, Y. M.)2015(.Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of airmass transport over East Asia. Atmospheric Chemistry and Physics Discussions.15(3), 3381-3413. doi: 10.5194/acpd-15-3381-2015
Solgi, E., & Parsi Mehr, M. (2023). Predicting and Modeling of Daily Concentration of Particulate Matter (PM2.5 & PM10) in Hamadan Winter with Multilayer Perceptron Neural Network. Environmental Researches, 13(26), 99-114. doi: 10.22034/eiap.2023.169982. (In Persian).
Squizzato, S., Masiol, M., Rich, D. Q. and Hopke, P. K. )2018(. PM2.5 and gaseous pollutants in NewYork State during 2005–2016: Spatial variability, temporal trends, and economic influences. Atmospheric Environment. 183(2), 209-224. doi: 10.1016/j.atmosenv.2018.03.045
Sun, J., L. Zhao, S. Zhao., & Zhang, R. )2006(. An integrated dust storm prediction system suitable for east Asia and its simulation results. Global and Planetary Change. 52(1-4), 71-87. doi: 10.1016/j.gloplacha.2006.02.005
Velletri, S., Giannaros, T. M., & Zittis, G. (2023). Dust in western Iran: The emergence of new sources and the role of regional atmospheric patterns. Scientific Reports, 13(2), 14616. doi: 10.1038/s41598-023-42173-3.
Vorpahl, P., Elsenbeer, H., Märker, M., & Schröder, B. (2012). How can statistical models help to determine driving factors of landslides Ecological Modelling, 239, 27-39. doi: 10.1016/j.ecolmodel.2011.12.007
Wang, J., Li, Q., Zhang, L., & Chen, H. (2024). Impact of precipitation on air quality and PM₂.₅ concentration: Evidence from observational data in China. Atmospheric Pollution Research, 15(1), 120-130. doi: 10.1016/j.apr.2024.01.015.
Xu, G., Ren, X., Xiong, K., Li, L., Bi, X., & Wu, Q. (2020). Analysis of the driving factors of PM2.5 concentration in the air: A case study of the Yangtze River Delta, China. Ecological Indicators. 110(3), 105889. doi: 10.1016/j.ecolind.2019.105889
Yang, X., Dengpan, X., Jianzhao, T., & Wei, W. (2022). Spatiotemporal Distributions of PM2.5 Concentrations in the Beijing–Tianjin–Hebei Region From 2013 to 2020. Frontiers in Environmental Science, 10(5), 2296-665X. doi: 10.3389/fenvs.2022.842237.
Zare Shahneh, M., & Arhami, M. (2022). Source apportionment of fine particulate matter using combined receptor models in Tehran. Sharif Journal of Civil Engineering, 37.2(4.2), 51-58. doi: 10.24200/j30.2021.57146.2889. (In Persian).
Zhang, Y., Li, Y., & Wang, W. (2019). Influence of soil temperature on aerosol emissions. Environmental Pollution, 248(7), 203–211. doi: 10.1316/j.soilbio.2020.107756
Zhang, Y., Liu, X., Zhou, Y., & Chen, X. (2024). Land-use classification using Random Forest, SVM, and ANN: A comparative study in tropical urban regions. Frontiers in Environmental Science, 12(5), 1130- 1134. doi: 10.3389/fenvs.2024.01134
Zhu, Y., Liu, Y., Wang, X., & Zhang, L. (2021). Inverse modeling of the 2021 spring super dust storms in East Asia. Atmospheric Chemistry and Physics, 22(10), 6393–6411. doi: 10.5194/acp-22-6393-2022research.tudelft.nl+1acp.copernicus.org+1.
Zolfaghari, H., Sahraei, J., Masoompoor Samakoosh, J., & Borzoi, F. (2016). Study of Sensible Heat Flux and its Relationship with Temperature Changes and Wind during Warm Periods of Year in Iran. Physical Geography Research, 48(3), 431-450. doi: 10.22059/jphgr.2016.60100. (In Persian).
Zou, X. K., & Zhai, P. M. (2004). Relationship between vegetation coverage and spring dust storms over northern China. Journal of Geophysical Research: Atmospheres, 109(D3), 3104-3110. doi: 10.1029/2003JD003913