Akbarian, M., & Nohegar, A. (2013). Evaluation of the effect of afforestation on wind erosion reduction in the Pibeshk area of Jask County. Geographical Research Quarterly, 29(3), 179–190. https://jgr.ui.ac.ir/article_18061.html. (In Persian)
Babechuk, M.G., Widdowson, M., & Kamber, B.S. (2014). Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chemical Geology, 363, 56–75. doi: 10.1016/j.chemgeo.2013.10.027.
Ballantine, D., Walling, D., Collins, A., & Leeks, G. (2009). The content and storage of phosphorus in fine-grained channel bed sediment in contrasting lowland agricultural catchments in the UK. Geoderma, 151, 141-149. doi: 10.1016/j.geoderma.2009.03.021.
Baiyegunhi, C., Liu, K., & Gwavava, O. (2017). Geochemistry of sandstones and shales from the Ecca Group, Karoo Supergroup, in the Eastern Cape Province of South Africa: Implications for provenance, weathering and tectonic setting. Open Geosciences, 9, 340–360. doi: 10.1515/geo-2017-0028.
Berger, A., & Frei, R. (2014). The fate of chromium during tropical weathering: a laterite profile from Central Madagascar. Geoderma, 213, 521–532. doi: 10.1016/j.geoderma.2013.09.004.
Beavers, A. H., Fehrenbacher, J. B., Johnson, P. R., & Jones, R. L. (1963). CaO-ZrO2 molar ratios as an index of weathering. Soil Science Society of America Journal, 27, 408–412. doi: 10.2136/sssaj1963.03615995002700040018x.
Brown, D. J., Helmke, P. A., & Clayton, M. K. (2003). Robust geochemical indices for redox and weathering on a granitic laterite landscape in central Uganda. Geochimica et Cosmochimica Acta, 67(15), 2711–2723. doi: 10.1016/S0016-7037(03)00104-2.
Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N., & Markovic, S. (2011). An evaluation of geochemical weathering indices in loess-paleosol studies. Quaternary International, 240(1-2), 12–21. doi: 10.1016/j.quaint.2010.07.019.
Collins, A. L., Walling, D. E., & Leeks, G. J. L. (1997). Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type. Geografiska Annaler, 79(4), 239–254. doi: 10.1111/j.0435-3676.1997.00020.x.
Collins, A., & Walling, D. (2007). Sources of fine sediment recovered from the channel bed of lowland groundwater-fed catchments in the UK. Geomorphology, 88(1-2), 120–138. doi: 10.1016/j.geomorph.2006.10.018.
Conrey, R.M., Hooper, P.R., Larson, P.B., Chesley, J., & Ruiz, J. (2001). Trace element and isotopic evidence for two types of crustal melting beneath a High Cascade volcanic center, Mt. Jefferson, Oregon. Contributions to Mineralogy and Petrology, 141(6), 710-732. doi: 10.1007/s004100100259.
Chen, Q., Li, Z., Dong, S., Wang, N., Lai, D.Y.F., & Ning, K. (2018). Spatial variations in the chemical composition of eolian sediments in hyperarid regions: A case study from the Badain Jaran Desert, Northwestern China. J. Sediment. Journal of Sedimentary Research, 88(2), 290–300. doi: 10.2110/jsr.2018.11.
Chen, F., Wang, X., Li, X., Wang, J., Xie, D., Ni, J., & Liu, Y. (2019). Using the sediment fingerprinting method to identify the sediment sources in small catchments with similar geological conditions. Agriculture, ecosystems & environment, 286, 106655. doi: 10.1016/j.agee.2019.106655.
Chen, Q., Li, Z., Dong, S., Yu, Q., Zhang, C., & Yu, X. (2021). Applicability of chemical weathering indices of eolian sands from the deserts in northern China. Catena, 198, 105032. doi: 10.1016/j.catena.2020.105032.
Chen, G., Liang, A., Dong, Z., Shi, W., Li, C., Nan, W., & Shao, T. (2022). Quantification of the aeolian sand source in the Ulan Buh Desert using the sediment source fingerprinting (SSF) method within MixSIAR modelling framework. Catena, 219, 106579. doi: 10.1016/j.catena.2022.106579.
Chen, G., Li, G., Liang, A., Dong, Z., Liu, X., Ma, F., Cao, M., Yu, J., & Sadiq, M. (2024). Fingerprinting aeolian sediment sources in the Mu Us Sandy Land using the MixSIAR model. Catena, 241, 108049. doi: 10.1016/j.catena.2024.108049.
Chetelat, B., Liu, C., Wang, Q., & Zhang, G. (2013). Assessing the influence of lithology on weathering indices of Changjiang river sediments. Chemical Geology, 359, 108–115. doi: 10.1016/j.chemgeo.2013.09.018.
Chittleborough, D. (1991). Indices of weathering for soils and palaeosols formed on silicate rocks. Australian Journal of Earth Sciences, 38(1), 115-120. doi: 10.1080/08120099108727959.
Derakhshan-Babaei, F., Nosrati, K., Tikhomirov, D., Christl, M., Sadough, H., & Egli, M. (2020). Relating the spatial variability of chemical weathering and erosion togeological and topographical zones. Geomorphology, 363, 107235. doi: 10.1016/j.geomorph.2020.107235.
Dessert, C., Dupre, B., Gaillardet, J., Francois, L.M., Allegre, C.J., Anderson, S.P., & Blum, A.E. (2003). Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202(3-4), 257–273. doi: 10.1016/j.chemgeo.2002.10.001.
Du, S., Wu, Y., & Tan, L. (2018). Geochemical evidence for the provenance of aeolian deposits in the Qaidam Basin, Tibetan Plateau. Aeolian Research, 32, 60–70. doi: 10.1016/j.aeolia.2018. 01.005.
Egli, M., Plötze, M., Tikhomirov, D., Kraut, T., Wiesenberg, G.L.B., Lauria, G., & Raimondi, S. (2019). Soil development on sediments and evaporites of the Messinian crisis. Catena, 187, 104368. doi: 10.1016/j.catena.2019.104368.
Feiznia, S., Pourteib, F., Ahmadi, H., & Shirani, K. (2015). Sediment source fingerprinting of Gavkhuni playa margin aeolian deposits using geochemical methods. Iranian Journal of Range and Desert Research, 22(4), 695–710. doi: 10.22092/ijrdr.2016.106042. (In Persian)
Fedo, C. M., Nesbitt, H.W., & Young, G.M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23. doi: 10.1130/0091-7613(1995)0232.3.CO;2.
Fox, J., & Papanicolaou, A. (2008). Ap- plication of the spatial distribution of nitrogen sta- ble isotopes for sediment tracing at the watershed scale.Journal of Hydrology, 358(1-2), 46-55. doi: 10.1016/j.jhydrol.2008.05.032.
Garzanti, E., Padoan, M., Peruta, L., Setti, M., Najman, Y., & Villa, I.M. (2013). Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochem. Geophys. Geosyst, 14(2), 292–316. doi: 10.1002/ggge.20060.
Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., & Villa, I.M. (2014). Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology, 366, 61–74. doi: 10.1016/j.chemgeo.2013.12.016.
Garrett, R. G., & Lalor, G. C. (2005). The Fe/Na ratio, a framework for modelling trace element distributions in Jamaican soils. Geochemistry: Exploration, Environment, Analysis, 5(2), 147–157. doi: 10.1144/1467-7873/03-057.
Ghaysari, F., & Ayobi, S. (2017). Investigation of variability in some physical and chemical properties of soil along a transect affected by wind erosion in Segzi region, Isfahan. Water and Soil Journal (Agricultural Sciences and Industries), 30(1), 136–148. doi: 10.22067/jsw.v30i1.31897. (In Persian).
Guo, Y., Yang, S., Ni, S., Chao, L., Ping, Y., & Wang, Z. (2018). Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochimica et Cosmochimica Acta, 227, 48–63. doi: 10.1016/j.gca.2018.02.015.
Harnois, L., & Moore, J. M. (1988). Geochemistry and origin of the Ore Chimney Formation, a transported paleoregolith in the Grenville Province of southeastern Ontario, Canada. Chemical Geology, 69(3-4), 267-289. doi: 10.1016/0009-2541(88)90039-3.
Hakimkhani, S. (2006). Investigation of using tracers in fingerprinting fine-grained water sediments (Case study: Poldasht flood spreading basin), Thesis, Faculty of Natural Resources, University of Tehran. (In Persian)
Jenny, H. (1941). Factors of Soil Formation: A System of Quantitative Pedology. New York: Dover (ISBN13 9780486681283).
Kasanzu, C. H., Maboko, M. A. H., & Manya, S. (2016). Reconstruction of Pliocene-Pleistocene sediment sources and weathering intensity in the paleo-life rich Olduvai and Laetoli basins of northern Tanzania using major and trace element geochemistry and Sr isotopic data. Journal of African Earth Sciences, 123, 89–98. doi: 10.1016/j.jafrearsci.2016.07.019.
Large, R. R., Gemmell, J. B., Paulick, H., & Huston, D. L. (2001). The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology, 96(5), 957–971. doi: 10.2113/gsecongeo.96.5.957.
Li, B., Feng, Q., Li, Z., Wang, F., Luo, C., Li, R., & Hu, H. (2024). Provenance of surface dune sands in the Gurbantunggut Desert, northwestern China: Qualitative and quantitative assessment using geochemical fingerprinting. Geomorphology, 452, 109115. doi: 10.1016/j.geomorph.2023.109115.
Li, Y., Gholami, H., Song, Y., Fathabadi, A., Malakooti, H., & Collins, A. L. (2020). Source fingerprinting loess deposits in Central Asia using elemental geochemistry with Bayesian and GLUE models. Catena, 194, 104808. doi: 10.1016/j.catena.2020.104808.
Liu, Z., & Yang, X. (2013). Geochemical-geomorphological evidence for the provenance of aeolian sands and sedimentary environments in the Hunshandake Sandy Land, Eastern Inner Mongolia, China. Acta Geologica Sinica‐English Edition, 87(3), 871–884. doi: 10.1111/1755-6724.12095.
Liu, Q., & Yang, X. (2018). Geochemical composition and provenance of aeolian sands in the Ordos Deserts, northern China. Geomorphology, 318, 354–374. doi: 10.1016/j.geomorph.2018.06. 017.
Liu, D., Abuduwaili, J., Lei, J., Wu, G., & Gui, D. (2011). Wind erosion of saline playa sediments and its ecological effects in Ebinur Lake, Xinjiang, China. Environmental Earth Sciences, 63(2), 241-250. doi: 10.1007/s12665-010-0690-4.
Liu, X., Du, H., Li, S., Wang, T., & Fan, Y. (2022). Effects of different cropland reclamation periods on soil particle size and nutrients from the perspective of wind erosion in the Mu Us Sandy Land. Frontiers in Environmental Science, 10, 861273. doi: 10.3389/ fenvs.2022.861273.
Lopez, J. M. G., Bauluz, B., Nieto, F., & Oliete, A. Y. (2006). Factors controlling the trace-element distribution in fine-grained rocks: The Albian kaolinite-rich deposits of the Iberian Range (NE Spain). Chemical Geology, 231(1-2), 31–49. doi: 10.1016/j.chemgeo.2004.08.024.
Lupker, M., France-Lanord, C., Galy, V., Lave, J.M., & Kudrass, H. (2013). Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth and Planetary Science Letters, 365, 243–252. doi: 10.1016/j.epsl.2013.01.038.
Maleki, S., Karimi, A., & Hashemi, H. (2010). Wind erosion and its control in Gonabad. In Proceedings of the 2nd National Conference on Wind Erosion and Dust Storms (pp. 27–31). Yazd University. https://civilica.com/doc/101026. (In Persian).
Maher, B.A., & Taylor, R.M. (1988). Formation of ultrafine-grained magnetite in soils. Nature, 336(6197), 368–370. doi: 10.1038/336368a0.
Maynard, J.B. (1992). Chemistry of modern soils as a guide to interpreting Precam- brian paleosols. The Journal of Geology, 100 (3), 279-289. doi: 10.1086/629632.
McLemore, V. T., Dunbar, N., Tachie-Menson, S., & Donahue, K. (2010). The Effect of Weathering on the Acid-Producing Potential of the Goathill North Rock Pile, Questa mine, NM. London: CRC Press. 10, 213-227.
Meng, X., Liu, L., Zhao, W., He, T., Chen, J., & Ji, J. (2019). Distant Taklimakan Desert as an important source of aeolian deposits on the Chinese Loess Plateau as evidenced by carbonate minerals. Geophysical Research Letters ,46(9), 4854–4862. doi: 10.1029/2018GL081551.
Moquet, J.-S., Crave, A., Viers, J., Seyler, P., Armijos, E., Bourrel, L., Chavarri, E., Lagane, C., Laraque, A., Casimiro, W.S.L., Pombosa, R., Noriega, L., Vera, A., & Guyot, J.-L.(2011). Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chemical Geology, 287(1-2), 1–26. doi: 10.1016/j.chemgeo.2011.01.005.
Moosdorf, N., Hartmann, J., Lauerwald, R., Hagedorn, B., & Kempe, S. (2011). Atmospheric CO2 consumption by chemical weathering in North America. Geochimica et Cosmochimica Acta, 75(24), 7829–7854. doi: 10.1016/j.gca.2011.10.007.
Moradi, H. R., Rajabi, M., & Faragzadeh, M. (2011). Investigation of meteorological drought characteristics in Fars province, Iran. Catena, 84(1-2), 35-46. doi: 10.1016/j.catena.2010.08. 016.
Mohammadi Raigania, Z, Nosrati, K., & Collins, A. (2019). Fingerprinting sub-basin spatial sediment sources in a large Iranian catchment under dry-land cultivation and rangeland farming. Combining geochemical tracers and weathering indices. Journal of Hydrology:Regional Studies, 24-100613. doi: 10.1016/j.ejrh.2019.100613.
Mohammadkhan, S., Abroosh, S., Sarvati, M. R., & Ghahroodi Tali, M. (2021). Sediment source fingerprinting of aeolian deposits using geochemical tracers through sediment fingerprinting method. Geographical Studies of Arid Regions, 12(46), 17–30. https://jargs.hsu.ac.ir/article_ 161553.html. (In Persian)
Nauman, T. W., Munson, S. M., Dhital, S., Webb, N. P., & Duniway, M. C. (2023). Synergistic soil, land use, and climate influences on wind erosion on the Colorado Plateau: Implications for management. Science of the Total Environment, 865, 164605. doi: 10.1016/j.scitotenv.2023. 164605.
Nordt, L., & Driese, S. (2010). New weathering index improves paleorainfall estimates from Vertisols. Geology, 38(5), 407-410. doi: 10.1130/G30689.1.
Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885),715–717. doi: 10.1038/299715a0.
Nosrati, K., Govers, G., Ahmadi, H., Sharifi, F., Amoozegar, M. A., Merckx, R., & Vanmaercke, M. (2011). An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints? Sediment Research, 26(2), 136-151. doi: 10.1016/S1001-6279(11)60082-6.
Nosrati, K., Govers, G., Semmens, B. X., & Ward, E. J. (2014). A mixing model to incorporate uncertainty in sediment fingerprinting. Geoderma, 217, 173-180. doi: 10.1016/j.geoderma.
Nosrati, K., Haddadchi, A., Collins, A.L., Jalali, S., & Zare, M.R. (2018). Tracing sediment sources in a mountainous forest catchment under road construction in northern Iran: comparison of Bayesian and frequentist approaches. Environmental Science and Pollution Research, 25 (31), 30979–30997. doi: 10.1007/s11356-018-3097-5.
Nosrati, K., Akbari, M., Ayoubi, Sh., Degos, E., Koubansky, A., Coquatrix, Q., Pulley, S., & Collins, A. (2020). Storm dust source fingerprinting for different particle size fractions using colour and magnetic susceptibility and a Bayesian un-mixing model. Environmental Science and Pollution Research, 27(24), 31578–31594. doi: 10.1007/s11356-020-09249-3.
Nosrati, K., Akbari-Mahdiabad, M., Ayoubi, S., & Collins, A. L. (2021). An exploratory study on the use of different composite magnetic and colour fingerprints in aeolian sediment provenance fingerprinting. Catena, 200, 105182. doi: 10.1016/j.catena.2021.105182.
Nosrati, K., Mohammadi-Raigani, Z., Haddadchi, A., & Collins, A. L. (2021). Elucidating intra-storm variations in suspended sediment sources using a Bayesian fingerprinting approach. Journal of Hydrology, 596, 126115. doi: 10.1016/j.jhydrol.2021.126115.
Nosrati, K., Moradian, H., Dolatkordestani, M., Mol, L., & Collins, A. L. (2022). The efficiency of elemental geochemistry and weathering indices as tracers in aeolian sediment provenance fingerprinting. Catena, 210, 105932. doi: 10.1016/j.catena.2021.105932.
Nosrati, K., & Ahmadi, F. (2018). Sediment source fingerprinting during spring and autumn using geochemical tracers. Iranian Journal of Geology, 12 (46), 65–73. https://www.magiran.com/ p1905103. (In Persian).
Nosrati, K., Ahmadi, H., & Sharifi, F. (2012). Sediment source fingerprinting: Relationship between soil enzyme activities and sediment. Journal of Agricultural Science and Technology, Water and Soil Science, 16(60), 227–237. dor: 20.1001.1.24763594.1391.16.60.19.4. (In Persian)
Pasztor, L., Négyesi, G., Laborczi, A., & Kovacs, T. (2016). Integrated spatial assessment of wind erosion risk in Hungary. Natural Hazards and Earth System Sciences, 16, 2421-2432. doi: 10.5194/nhess-16-2421-2016.
Piché, M., & Jébrak, M. (2004). Normative minerals and alteration indices developed for mineral exploration. Journal of Geochemical Exploration, 82(1-3), 59–77. doi: 10.1016/j.gexplo. 2003.10.001.
Price, J.R., & Velbel, M.A. (2003). Chemical weathering indices applied t weatherin profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3), 397–416. doi: 10.1016/j.jhydrol.2021.126115.
Pulley, S., Foster, I., & Antunes, P. (2014). The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene river basin. Geomorphology, 228, 303-319. doi: 10.1016/j.geomorph.2014.09.016.
Pulley, S., Foster, I., & Collins, A.L. (2017). The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs. Journal of Environmental Management, 194, 16–26. doi: 10.1016/j.jenvman.2016.04.048.
Rafahi, H. (2009). Wind erosion and conservation. Tehran: University of Tehran. (In Persian).
Raigani, Z. M., Nosrati, K., & Collins, A. L. (2019). Fingerprinting sub-basin spatial sediment sources in a large Iranian catchment under dry-land cultivation and rangeland farming: Combining geochemical tracers and weathering indices.
Journal of Hydrology: Regional Studies, 24,100613.
doi: 10.1016/j.ejrh.2019.100613.
Rocha Filho, P., Antuenes, F. S., & Falcão, M. F. G. (1985). Quantitative influence of the weathering upon the mechanical properties of a young gneiss residual soil. Proceedings of the First International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils, 1, 281-294. https://scholar.google.com/scholar?cluster=15556124631364097905&hl=fa&as_ sdt=2005&sciodt=0,5.
Roshan Nekou, P., Nosrati, K., & Dehbandi, R. (2025). Efficiency of weathering indices and geochemical elements in tracing sediment sources of sub-basins (Study area: Alvand watershed, Kermanshah province).
Iranian Journal of Soil and Water Research, 56(1), 1-16.
doi: 10.22059/ijswr.2024.378696.669743. (In Persian)
Taheri Nezhad, K. (2016). Analysis of site selection and morphological changes of Bafq sand dunes with emphasis on the role of wind and local topography, Thesis, Geomorphology, Yazd University (In Persian)
Udagedara, D. T., Oguchi, C. T., & Gunatilake, A. A. J. K. (2017). Combination of chemical indices and physical properties in the assessment of weathering grades of sillimanite-garnet gneiss in tropical environment.
Bulletin of Engineering Geology and the Environment, 76, 145-157.
doi: 10.1007/s10064-016-0878-2.
Uzgoren-Aydin, N., Aydin, A., & Malpas, J. (2002). Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong.
Engineering geology, 63(1-2), 99–119.
doi: 10.1016/S0013-7952(01)00073-4.
Von Eynatten, H., Barceló-Vidal, C., & Pawlowsky-Glahn, V. (2003). Modeling compositional change: the example of chemical weathering of granitoid rocks.
Mathematical Geology, 35, 231–251.
doi: 10.1023/A:1023835513705.
Wang, X., Lou, J., Cai, D., & Jiao, L. (2019). Effects of Earth surface processes on the heterogeneity of surface soil elements and the responses of vegetation elements in the Otindag Desert, China.
Catena, 183, 104214.
doi: 10.1016/j.catena.2019.104214.
Walling, D.E., & Collins, A. L. (2004). Documenting catchment suspended sediment sources: problems, approaches and prospects.
Progress in Physical Geography, 28(2), 159-196.
doi: 10.1191/0309133304pp409ra.
Walling, D.E., Owens, P.N., Waterfall, B.D., Leeks, G.J.L., & Wass, P.D. (2000). The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK.
The Science of the Total Environment, 251, 205-222.
doi: 10.1016/S0048-9697(00)00384-3.
Walling, D. E., Golosov, V., & Olley, J. (2013). Introduction to the special issue, Tracer Applications in Sediment Research.
Hydrological Processes, 27(6), 775-974.
doi: 10.1002/hyp.9701
Walker, J.C.G., Hays, P.B., & Kasting, J.F. (1981). A negative feedback mechanism for the long-term stabilization of earth’s surface temperature.
Journal of Geophysical Research: Oceans, 86(C10), 9776–9782.
doi: 10.1029/JC086iC10p09776.
Wilkinson, S., Wallbrink, P., Hancock, G., Blake, W., Shakesby, R., & Doerr, S. (2009). Fallout radionuclide tracers identify a switch in sediment sources and transport-limited sedi- ment yield following wildfire in a eucalypt forest.
Geomorphology, 110, 140-151.
doi: 10.1016/j.geomorph.2009.04.001.
White, A. F (1995). Chemical Weathering Rates of Silicate Minerals in Soil: An Overview.Chemical Weathering Rates of Silicate Minerals.
Mineralogical Society of America, 31,1-22.
doi: 10.1515/9781501509650-011.
Zhou, A., Zhao, W., Han, Y., Zhang, S., & Pereira, P. (2025). Effects and benefits of wind erosion prevention in China’s dryland and surrounding countries.
Catena, 251, 108812.
doi: 10.1016/j.catena.2025.108812.
Zhao, M.-Y., & Zheng, Y.-F. (2015). The intensity of chemical weathering: Geochemical constraints from marine detrital sediments of Triassic age in South China.
Chemical Geology, 391, 111–122.
doi: 10.1016/j.chemgeo.2014.11.004.