Afshari, M., & Vali, A. (2023). The efficiency of remote sensing and machine learning algorithms in the zoning of susceptible areas to dust in Isfahan province.
Desert Management, 11(3), 73-88.
doi: 10.22034/jdmal.2023.2011344.1438. (In Persian).
Bochenek, B., & Ustrnul, Z. (2022). Machine learning in weather prediction and climate analyses—applications and perspectives.
Atmosphere 13(2), 180.
doi: 10.3390/atmos13020180
Borah, B., & Parmar, P. (2024). Soil Organic Carbon Dynamics: Drivers of Climate Change-Induced Soil Organic Carbon Loss at Various Ecosystems.
International Journal of Environment and Climate Change 14 (10):74-153.
doi: 10.9734/ijecc/2024/v14i104477
Darabi Cheghabaleki, S., Fatemi, S.E., & Hafezparast Mavadat, M. (2024). Enhancing spatial streamflow prediction through machine learning algorithms and advanced strategies.
Applied Water Science, 14(6), 110.
doi: 10.1007/s13201-024-02154-x
Dhanoa, M.S., Sanderson, R., Lister, S. J., Cardenas, L.M., Ellis, J.L., Lopez, S., & France, J. (2024). Decision tree learning with random forest models using agricultural and ecological field data incorporating multi-factor studies and covariate structure.
CABI Reviews, 19(1). doi: 10.1079/cabireviews.2024.0030
Ding, Z. (2024). Climate Prediction with Tree Structure Based on Random Forest.
Transactions on computer science and intelligent systems research, 5, 204-208.
doi: 10.62051/akf9ef10
Esmaeili, S. & Mojarrad, F. (2025). Investigating the stability of the groundwater level in the Eslamabad-e Gharb plain (Kermanshah province) and evaluating the future situation with atmospheric general circulation models.
Hydrogeomorphology, 11(41), 134-115.
doi: 10.22034/hyd.2024.62351.17 (In Persian).
Fatemi, S.E., & Parvini, H. (2022). The impact assessments of the ACF shape on time series forecasting by the ANFIS model.
Neural Computing and Applications 34(15), 12723-12736.
doi: 10.1007/s00521-022-07140-5
Ganjei, S., & Nazemi, A. H. (2024). Comparing the performance of machine learning methods in modeling daily reference ET and its spatial distribution (case study: Zanjan province).
Irrigation Sciences and Engineering. doi: 10.22055/jise.2024.45305.2103. (In Persian).
Giardina, F., Padron, R.S., Stocker, B.D., Schumacher, D.L., & Seneviratne, S.I. (2024). Large biases in soil moisture limitation across CMIP6 models
(No. EGU24-17662). Copernicus Meetings. doi: 10.5194/egusphere-egu24-17662
Guan, Y., Gu, X., Slater, L.J., Li, J., Kong, D., & Zhang, X. (2023). Spatio-temporal variations in global surface soil moisture based on multiple datasets: intercomparison and climate drivers.
Journal of Hydrology, 625, 130095.
doi: 10.1016/j.jhydrol.2023.130095
Horton, D., Johnson, J.T., Al-Khaldi, M., Baris, I., Park, J., & Bindlish, R. (2024). Soil Moisture During 2015 Spring Flood Events from the SMAP Radar Time-Series Ratio Algorithm.
In 2024 United States National Committee of URSI National Radio Science Meeting, USNC-URSI NRSM, 352-352.
doi: 10.23919/USNC-URSINRSM60317.2024.10465105
Jin, H., Jiang, W., Chen, M., Li, M., Bakar, K.S., & Shao, Q. (2023). Downscaling long lead time daily rainfall ensemble forecasts through deep learning.
Stochastic Environmental Research and Risk Assessment, 37(8), 3185-3203.
doi: 10.1007/s00477-023-02444-x
Jung, Y. (2018). Multiple predicting K-fold cross-validation for model selection.
Journal of nonparametric statistics, 30(1), 197-215.
doi: 10.1080/10485252.2017.1404598
Kiani, R., & Bayat, H. (2024). Evaluation of the Capability of Regression and Random Forest Methods to Estimate Soil Water Retention Curve by Developing Pseudo-continuous Pedotransfer Functions.
Water and Soil Science, 34 (4), 15-36.
doi: 10.22034/ws.2024.60933.2556. (In Persian).
Leinonen, T., Wong, D., Vasankari, A., Wahab, A., Nadarajah, R., Kaisti, M., & Airola, A. (2024). Empirical investigation of multi-source cross-validation in clinical ECG classification.
Computers in Biology and Medicine, 183, 109271.
doi: 10.1016/j.compbiomed.2024.109271
Liu, Y., Chen, X., Bai, Y., & Zeng, J. (2024). Evaluation of 22 CMIP6 model-derived global soil moisture products of different shared socioeconomic pathways.
Journal of Hydrology, 636, 131241.
doi: 10.1016/j.jhydrol.2024.131241
Moeeni, H., Bonakdari, H., & Fatemi, S.E. (2017). Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction.
Journal of hydrology, 547, 348-364.
doi: 10.1016/j.jhydrol.2017.02.012
Mosavi, H., Kamangar, M., & Krbalayy, A. (2021). Spatial Analysis of Soil Moisture after Excessive Normal Precipitation of 1997-98 with Linear Modeling of Environmental Variables and Satellite Images.
Watershed Engineering and Management, 13(1), 160-173.
doi: 10.22092/ijwmse.2020.128371.1737. (In Persian).
Nazariani, N., & Fallah, A. (2023). Landslide Risk Modeling using Data Mining in Hyrcanian Forests.
Watershed Management Research, 14(27), 123-134.
doi: 10.61186/jwmr.14.27.123. (In Persian).
Nemati Paykani, M., Ejtehadi, H., Asri, Y., & Esmailzadeh, O. (2021). A Floristic Study of Vascular Plants in the Qalajeh Protected Area in Kermanshah Province.
Taxonomy and Biosystematics, 13(48), 59-92.
doi: 10.22108/tbj.2021.130866.1181. (In Persian).
Nouraki, A., Golabi, M., Albaji, M., Naseri, A., & Homayouni, S. (2023). Spatial-temporal modeling of soil moisture using optical and thermal remote sensing data and machine learning algorithms.
Journal of Soil and Water Research, 54(4), 637-653.
doi: 10.22059/ijswr.2023.356707.669469. (In Persian).
Paul, S., & Singh, S. (2020). Soil moisture prediction using machine learning techniques.
In Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems, 1-7.
doi: 10.1145/3440840.3440854
Peng, C., Zeng, J., Chen, K.S., Ma, H., & Bi, H. (2023). Spatiotemporal Patterns and Influencing Factors Of Soil Moisture At A Global Scale.
In IGARSS 2023, International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 3174-3177.
doi: 10.1109/IGARSS52108.2023.10282096
Pinnington, E., Quaife, T., & Black, E. (2018). Impact of remotely sensed soil moisture and precipitation on soil moisture prediction in a data assimilation system with the JULES land surface model.
Hydrology and Earth System Sciences, 22(4), 2575-2588.
doi: 10.5194/hess-22-2575-2018
poursalehi, F., KhasheiSiuki, A., & Hashemi, S. R. (2021). Investigating the performance of random forest algorithm in predicting water table fluctuations Compared with two models of decision tree and artificial neural network (Case study: unconfined aquifer of Birjand plain).
Ecohydrology, 8(4), 961-974.
doi: 10.22059/ije.2022.327263.1526. (In Persian).
Rampal, N., Hobeichi, S., Gibson, P. B., Bano-Medina, J., Abramowitz, G., Beucler, T., Gonzalez-Abad, J., Chapman, W., Harder, P., & Gutierrez, J. M. (2024). Enhancing Regional Climate Downscaling through Advances in Machine Learning.
Artificial Intelligence for the Earth Systems, 3(2), 230066.
doi: 10.1175/AIES-D-23-0066.1
Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Crespo Cuaresma, J., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., & Tavoni, M. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview.
Global Environmental Change, 42, 153-168.
doi: 10.1016/j.gloenvcha.2016.05.009
Sadidi, J., & Maliki, R. (2022). Using machine learning-based models for landslide susceptibility mapping in Mahabad-Sardasht road.
Remote Sensing and GIS Applications in Environmental Sciences, 2(4), 81-100.
doi: 10.22034/rsgi.2022.15839. (In Persian).
Sahoo, S., & Sahoo, B. (2024).
Assessing Spatially Distributed Soil Moisture under Changing Land Uses and Climate. In Climate Change Impacts on Soil-Plant-Atmosphere Continuum, Singapore: Springer Nature Singapore, 78, 209-228.
doi: 10.1007/978-981-99-7935-6_8.
Salehi tabas, M., Yaghoobzadeh, M., & Hashemi, S. (2020). The effect of climate change on soil moisture content of Maize farm using data from the fifth report and SWAP model.
Journal of Irrigation & Drainage, 13(6), 1832-1843.
dor: 20.1001.1.20087942.1398.13.6.25.1. (In Persian).
Salman, H. A., Kalakech, A., & Steiti, A. (2024). Random Forest Algorithm Overview.
Babylonian Journal of Machine Learning, 2024, 69-79.
doi: 10.58496/BJML/2024/007
Tahmasebi, M. R., Shabanlou, S., Rajabi, A., & Yosefvand, F. (2021). Flood probability zonation using a comparative study of two well-known random forest and support vector machine models in northern Iran.
Water and Irrigation Management, 11(2), 223-235.
doi: 10.22059/jwim.2021.317527.856. (In Persian).
Verma, S., Bhatla, R., Ghosh, S., Sinha, P., Kumar Mall, R., & Pant, M. (2021). Spatio‐temporal variability of summer monsoon surface air temperature over India and its regions using Regional Climate Model.
International Journal of Climatology, 41(13), 5820-5842.
doi: 10.1002/joc.7155
Wang, D., Liu, J., Luan, Q., Shao, W., Fu, X., Wang, H., & Gu, Y. (2023). Projection of future precipitation change using CMIP6 multimodel ensemble based on fusion of multiple machine learning algorithms: A case in Hanjiang River Basin, China.
Meteorological Applications, 30(5), e2144.
doi: 10.1002/met.2144
Wilson, M. D., Datta, R., Savarimuthu, S., Moller, D., & Ruf, C. (2024). Prediction of Soil Moisture From Near-Global Cygnss Gnss-Reflectometry Using a Random Forest Machine Learning Model.
In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, 4465-4471.
doi: 10.1109/IGARSS53475.2024.10642723
Wu, X., Xu, H., He, H., Wu, Z., Lu, G., & Liao, T. (2024). Agricultural Drought Monitoring Using an Enhanced Soil Water Deficit Index Derived from Remote Sensing and Model Data Merging.
Remote Sensing, 16(12), 2156.
doi: 10.3390/rs16122156
Yaghoobzadeh, M., Amir Abadi Zade, M., Ramezani, Y., & Pourreza, B. M. (2018). An uncertainty analysis of general circulation models for estimation of soil moisture affected by climate change.
Journal of soil and water research, 48(5), 1109-1119.
doi: 10.22059/ijswr.2017.224039.667603. (In Persian).
Ye, S., Liu, L., Li, J., Pan, H., Li, W., & Ran, Q. (2023). From rainfall to runoff: The role of soil moisture in a mountainous catchment.
Journal of Hydrology, 625, 130060.
doi: 10.1016/j.jhydrol.2023.130060
Zhang, P., Lu, J., & Chen, X. (2022). Machine-learning ensembled CMIP6 projection reveals socio-economic pathways will aggravate global warming and precipitation extreme.
Hydrology and Earth System Sciences Discussions, 2022, 1-40.
doi: 10.5194/hess-2022-235
Zhou, Z., Wang, Y., Li, R., Qi, L., Zhao, Y., Xu, Y., & Huang, J. (2023). The deterioration and restoration of dried soil layers: New evidence from a precipitation manipulation experiment in an artificial forest.
Journal of Hydrology, 625, 130087.
doi: 10.1016/j.jhydrol.2023.130087