Total Ozone Column Variations over Iran: A Study on Spatial and Temporal Trends

Document Type : Research Paper

Authors

1 Department of Physical Geography, University of Sistan and Baluchestan, Zahedan, Iran.

2 Department of Geography, University of Birjand, Birjand, Iran.

Abstract

Ozone in the atmosphere serves as a greenhouse gas and a shield against ultraviolet radiation, making it crucial for maintaining ecosystem balance and promoting human health. Variations in its levels can adversely impact climate change and air quality. Therefore, monitoring ozone concentrations is vital for creating effective environmental policies and strategies to mitigate these impacts. For this purpose, MERRA-2 data was used from 1980 to 2019. This study aims to understand the variations in ozone levels across different regions and seasons and is comprised of two main parts. First, we analyzed spatiotemporal variations in ozone in Iran’s atmosphere. We explored how ozone levels change throughout the year and across different geographical locations. We found that the highest ozone levels occurred during spring (May), whereas the lowest levels were observed in autumn (October). Geographically, the highest ozone concentrations are observed in the northern and northwestern regions of Iran, while the lowest levels are found in the southern areas. These variations undergo monthly fluctuations influenced by various factors. In the cold season, ozone concentration is primarily a function of latitude, whereas, in the warm season, the impact of altitude becomes significantly more pronounced than latitude. The annual ranges of ozone change were 294 and 354.47. Notably, the total amount of ozone in Iran’s atmosphere exhibited overall negative annual, seasonal, and monthly trends. This trend was particularly pronounced during the cold months, with statistical significance observed in winter (α=0.01). Spatially, the northwestern region of Iran, extending to its central side, exhibited a significant trend, whereas other areas showed a non-significant negative trend. This can contribute to a better understanding of ozone dynamics in Iran and provide valuable insights for policymakers and researchers working on climate change mitigation.
Extended Abstract
1-Introduction
Environmental sustainability refers to the continuous preservation of natural resources and the reduction of environmental changes to maintain a balance between human activities and the environment, ensuring sufficient resources remain for future generations (Morelli, 2011). Among these, ozone (O3) is a significant greenhouse gas in the atmosphere (Kiehl et al., 1999) with a concentration of 0.0012% (Kerr & McElroy, 1989), produced as a result of chemical reactions and unintended compounds in the Earth's atmosphere. After carbon dioxide (CO2: 1.82 ± 0.17 Wm-2) and methane (CH4: 0.48 ± 0.05 Wm-2), this gas ranks third in greenhouse effects with a radiative forcing of 0.2 ± 0.4 Wm-2 (Heue et al, 2016; Hartmann et al, 2013) and acts as a protective layer against ultraviolet radiation from the sun. Therefore, changes in this gas will have significant consequences for humans, plants, and animals. Existing studies have mostly focused on tropospheric ozone in large cities such as Tehran, and there is a research gap regarding the spatial and temporal distribution of total atmospheric ozone in Iran. This study, aiming to fill this gap, monitors regional ozone levels at different time scales (monthly, seasonal, and annual) and examines its changes using non-parametric and Sen's slope methods to contribute to maintaining environmental sustainability.
2-Materials and Methods
The study area is the country of Iran, with an area of approximately 1,648,195 square kilometers, located between latitudes 24° and 40° North and longitudes 44° and 64° East. As mentioned earlier, the purpose of this study is to investigate the spatiotemporal variations of total ozone over Iran. In this regard, data from NASA’s Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) were used. NASA's MERRA-2 reanalysis data is the latest product from NASA's Global Modeling and Assimilation Office (Koster, et al., 2015). To investigate the temporal variations of total atmospheric ozone over Iran based on the cells present within Iran's extent, two methods, Mann-Kendall and Sen's slope estimator, were employed.
3- Results and Discussion
This study has two parts: a spatiotemporal analysis of ozone and an analysis of its temporospatial changes. Based on the results of the first part, it was found that the average ozone level in Dobson units is about 286.62, with the minimum average occurring in October (270.02) and the maximum in March (308.39). Geographically, the highest ozone concentration is in the north and northwest of the country, and the lowest ozone level is related to the southern half of Iran. More precisely, the lowest levels in these areas are observed in the southeastern borders of Iran and also in low-lying areas such as the Jazmourian depression. In general, the spatial distribution of total atmospheric ozone over Iran has an increasing trend from south to north. These changes fluctuate monthly under the influence of various factors. In the cold season, ozone concentration is mainly a function of latitude, while in the warm season, the effect of altitude is much greater and more pronounced than latitude. The amount of ozone decreases at higher altitudes. Zhou and Yue-juan (2005) also point to the presence of low ozone over the Iranian plateau during the summer season. And more importantly, the ozone deficiency in the Iranian plateau is greater than that of the Tibetan plateau. Chevalier et al. (2007) point to the role of altitude in changes in ozone levels. In general, at lower altitudes, local chemical and physical processes have a greater impact on ozone levels, while at higher altitudes, large-scale atmospheric processes are more influential. The temporospatial changes of the study showed that the range of annual ozone variation is between 294 and 354.47 Dobson. Other findings showed that in the overall amount of atmospheric ozone over Iran, a negative trend is observed on annual, seasonal, and monthly scales. This research showed that stratospheric ozone fluctuations have a strong relationship with sunspots, and numerous studies have confirmed this connection. Also, research shows that global ozone changes by an average of about 2% during solar maximum and minimum periods. In addition, volcanic eruptions such as Mount Pinatubo and El-Chichon have also significantly affected the stratospheric composition and ozone levels. The ozone trend in the cold period (months) is generally more pronounced and statistically significant in the winter season. Spatially, the northwestern areas of the country to the central part of the country have a significant negative trend, and other areas show the same negative trend but are not statistically significant at any level. The findings of this research are consistent with the results of studies by Raispour and Asakereh (2018), which were conducted using satellite data received from the Giovanni website.
 
4- Conclusion
This study is the first spatio-temporal analysis of total atmospheric ozone changes over Iran using MERRA-2 database data. The results show that ozone levels generally decrease from north to south and northwest to southeast, with the lowest values in southern areas such as Sarbaz and Baft. Also, the temporal behavior of ozone shows annual fluctuations and its overall trend is negative, especially during the cold periods of the year. These changes are influenced by geographical and temporal factors, and appropriate management is essential to maintain environmental sustainability

Keywords

Main Subjects


Ahmadi Moghadam, M., & Mahmoudi, P. (2013). Analysis of Tehran Air Pollution Data in Recent Decade (2000-2009). Health and Environment, 6 (1), 33-44 URL: http://ijhe.tums.ac.ir/ article-1-5135-fa.html. (In Persian)
Alexandris, D., Varotsos, C., Kondratyev, K. Y., & Chronopoulos, G. (1999). On the altitude dependence of solar effective UV. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 24(5), 515-517. doi: 10.1016/S1464-1917(99)00082-3.
Alizadeh-Choobari, O., Zawar-Reza, P., & Sturman, A. (2014). The “wind of 120 days” and dust storm activity over the Sistan Basin. Atmospheric Research, 143, 328-341. doi: 10.1016/j. atmosres.2014.02.001.
Ball, W. T., Alsing, J., Mortlock, D. J., Staehelin, J., Haigh, J. D., Peter, T., Tummon, F., Stübi, R., Stenke, A., Anderson, J., Bourassa, A., Davis, S. M., Degenstein, D., Frith, S., Froidevaux, L., Roth, C., Sofieva, V., Wang, R., Wild, J., Yu, P., Ziemke, J. R., & Rozanov, E. V. (2018). Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmospheric Chemistry and Physics, 18(2), 1379-1394. doi: 10.5194/acp-18-1379-2018.
Boynard, A., Hurtmans, D., Koukouli, M. E., Goutail, F., Bureau, J., Safieddine, S., Lerot, C., Hadji-Lazaro, J., Wespes, C., Pommereau, J.-P., Pazmino, A., Zyrichidou, I., Balis, D., Barbe, A., Mikhailenko, S. N., Loyola, D., Valks, P., Van Roozendael, M., Coheur, P.-F., & Clerbaux, C. (2016). Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements. Atmospheric Measurement Techniques, 9(9), 4327-4353. doi: 10.5194/amt-9-4327-2016.
Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233-1242. doi: 10.1016/S0140-6736(02)11274-8.
Calisesi, Y., & Matthes, K. (2006). The middle atmospheric ozone response to the 11-year solar cycle. Space Science Reviews, 125(1-4), 273-286. doi: 10.1007/s11214-006-9063-4.
Callis, L. B., & Nealy, J. E. (1978). Solar UV variability and its effect on stratospheric thermal structure and trace constituents. Geophysical Research Letters, 5(4), 249-252. doi: 10.1029/ GL005i004p00249.
Chandra, S. (1991). The solar UV related changes in total ozone from a solar rotation to a solar cycle. Geophysical Research Letters, 18(5), 837-840. doi: 10.1029/91GL00850.
Chattopadhyay, G., Chakraborthy, P., & Chattopadhyay, S. (2012). Mann–Kendall trend analysis of tropospheric ozone and its modeling using ARIMA. Theoretical and Applied Climatology, 110(3-4), 321-328. doi: 10.1007/s00704-012-0617-y.
Chattopadhyay, S., Jhajharia, D., & Chattopadhyay, G. (2011). Univariate modelling of monthly maximum temperature time series over northeast India: Neural network versus Yule-Walker equation-based approach. Meteorological Applications, 18(1), 70-82. doi: 10.1002/met.214.
Chen, L., Yu, B., Chen, Z., Li, B., & Wu, J. (2014). Investigating the temporal and spatial variability of Total Ozone Column in the Yangtze River Delta using satellite data: 1978–2013. International Journal of Remote Sensing, 6(12), 12527–12543. doi: 10.3390/rs61212527.
Chevalier, A., Gheusi, F., Delmas, R., Ordóñez, C., Sarrat, C., Zbinden, R., Thouret, V., Athier, G., & Cousin, J.-M. (2007). Influence of altitude on ozone levels and variability in the lower troposphere: A ground-based study for western Europe over the period 2001–2004. Atmospheric Chemistry and Physics, 7, 4311–4326. doi: 10.5194/acp-7-4311-2007.
Chipperfield, M. P., & Randel, W. J. (2003). Global ozone: Past and future. In Scientific assessment of ozone depletion: 2002 (pp. 4.1–4.90). Geneva, Switzerland: World Meteorological Organization.
Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J.-F., Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M., Thouret, V., Wang, Y., & Zbinden, R. M. (2014). Global distribution and trends of tropospheric ozone: An observation-based review. Elementa: Science of the Anthropocene, 2, 000029. doi: 10.12952/journal.elementa.000029.
Dhomse, S. S., Mann, G. W., Antuña Marrero, J. C., Shallcross, S. E., Chipperfield, M. P., Carslaw, K. S., Marshall, L., Abraham, N. L., & Johnson, C. E. (2020). Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds. Atmospheric Chemistry and Physics, 20(21), 13627-13654. doi: 10.5194/acp-20-13627-2020.
en, P. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379-1389. doi: 10.1080/01621459.1968.10480934.
Farajzadeh, M., Rahimi, Y.G., Aliakbari Bidokhti, A.A., Mousavi, S.S. (2016). The synoptic analysis of ozone mini-hole events over central Iran (Esfahan). Journal of the Earth and Space Physics42(3), 673-686. doi: 10.22059/jesphys.2016.58890. (In Persian)
Faridi, S., Akbari, H., Faridi, H., et al. (2020). Human, forest and vegetation health metrics of ground-level ozone (SOMO35, AOT40f and AOT40v) in Tehran. Journal of Environmental Health Science and Engineering, 18, 1351–1358. doi: 10.1007/s40201-020-00552-2.
Felix, E. (2009). Investigation of long-term variations in stratospheric ozone through the combination of different satellite ozone data sets. Master’s thesis, Institute of Environmental Physics (IUP), University of Bremen (FB1), Bremen, Germany.
Fleming, E. L., Newman, P. A., Liang, Q., & Oman, L. D. (2024). Stratospheric temperature and ozone impacts of the Hunga Tonga-Hunga Ha'apai water vapor injection. Journal of Geophysical Research: Atmospheres, 129(1), e2023JD039298. doi: 10.1029/2023JD039298.
Frith, S., Stolarski, R., & Bhartia, P. K. (2004). Implications of Version 8 TOMS and SBUV Data for Long-Term Trend Analysis. In Proceedings of the Quadrennial Ozone Symposium (pp. 65–66). Kos, Greece.
Ghaffarpasand, O., Nasi, S., & Davari Shalamzari, Z. (2020). Short-term effects of anthropogenic/natural activities on the Tehran criteria air pollutants: Source apportionment and spatiotemporal variation. Building and Environment, 186, 107298. doi: 10.1016/j. buildenv.2020.107298.
Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Van Nostrand Reinhold Co.
Goudarzi, G., Geravandi, S., Foruozandeh, H., Babaei, A. A., Alavi, N., Niri, M. V., ... & Mohammadi, M. J. (2015). Cardiovascular and respiratory mortality attributed to ground-level ozone in Ahvaz, Iran. Environmental monitoring and assessment187, 1-9. doi: 10.1007/s10661-015-4674-8.
Granier, C., Bessagnet, B., Bond, T., D’Angiola, A., Denier van der Gon, H., Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van Aardenne, J., van der Werf, G. R., & van Vuuren, D. P. (2011). Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109(1-2), 163-190. doi: 10.1007/s10584-011-0154-1.
Gupta, P., Verma, S., Payra, S., & Bhatla, R. (2022). Evaluation of MERRA-2 Total Columnar Ozone from Ground-Based and AIRS Satellite Product. In Proceedings of URSI - RCRS 2022, IIT (Indore), India, 1 - 4 December, 2022. Retrieved from here.
Gupta, P., Verma, S., Payra, S., & Bhatla, R. (2022). An evaluation of long-term gridded datasets of total columnar ozone retrieved from MERRA-2 and AIRS over the Indian region. Environ Sci Pollut Res 30, 43586–43603. doi: 10.1007/s11356-023-25319-8.
Hadjinicolaou, P., & Pyle, J. A. (2004). The impact of Arctic ozone depletion on northern middle latitudes: Interannual variability and dynamical control. Journal of Atmospheric Chemistry, 47(1), 25-43. doi: 10.1023/B:JOCH.0000012242.06578.6c.
Hanssen-Bauer, I., & Førland, E. J. (1998). Long-term trends in precipitation and temperature in the Norwegian Arctic: Can they be explained by changes in atmospheric circulation patterns? Climatic Research, 10(2), 143-153. doi: 10.3354/cr010143.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., & Zhai, P. M. (2013). Observations: Atmosphere and Surface. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 172-173). Cambridge, UK, New York, NY, USA: Cambridge University Press. doi: 10.1017/CBO9781107415324.008.
Heidarzadeh, E., & Behzadfar, M. (2019). The Impact of Population Density on Urban Quality of Life Indicators, Case Study: District 3 of Tehran. The Journal of Urban Research and Planning. 10(37), 1-12. doi: 20.1001.1.22285229.1398.10.37.1.5. (In Persian)
Heue, K.-P., Coldewey-Egbers, M., Delcloo, A., Lerot, C., Loyola, D., Valks, P., & van Roozendael, M. (2016). Trends of tropical tropospheric ozone from 20 years of European satellite measurements and perspectives for the Sentinel-5 Precursor. Atmospheric Measurement Techniques, 9, 5037–5051. doi: 10.5194/amt-9-5037-2016.
Kamali, A., Khosravi, M., & Hamidianpour, M. (2020). Spatial-temporal analysis of net primary production (NPP) and its relationship with climatic factors in Iran. Environmental Monitoring and Assessment, 192(11), 718. doi: 10.1007/s10661-020-08667-7.
Kazemi, A., Eskandari, O., & Karimi, M. (2015). Incidence rate and geographical distribution of skin cancer in Kurdistan province of Iran. Journal of Dermatology and Cosmetic, 6(1), 38-45. Retrieved from http://jdc.tums.ac.ir/article-1-5110-fa.html. (In Persian)
Kerr, J. B., & McElroy, C. T. (1995). Total ozone measurements made with the Brewer ozone spectrophotometer during STOIC 1989. Journal of Geophysical Research: Atmospheres, 100(D5), 9225-9230. doi: 10.1029/94JD02147.
Kiehl, J. T., Schneider, T. L., Portmann, R. W., & Solomon, S. (1999). Climate forcing due to tropospheric and stratospheric ozone. Journal of Geophysical Research: Atmospheres, 104(D24), 31239–31254. doi: 10.1029/1999JD900991.
Kilian, M., Brinkop, S., & Jöckel, P. (2020). Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere. Atmospheric Chemistry and Physics, 20(19), 11697-11715. doi: 10.5194/acp-20-11697-2020.
Knowland, K. E., Ott, L. E., Duncan, B. N., & Wargan, K. (2017). Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 reanalysis. Geophysical Research Letters, 44(20), 10691-10701. doi: 10.1002/2017GL074532.
Koster, R. D., Bosilovich, M. G., Akella, S., Lawrence, C., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Todling, R., Vikhliaev, Y., Bloom, S., Collow, A., Partyka, G., Labow, G., Pawson, S., Reale, O., Schubert, S., & Suarez, M. (2015). Initial evaluation of the climate in MERRA-2. NASA Technical Report Series on Global Modeling and Data Assimilation, 43, NASA/TM-2015-104606/VOL.43. doi: 10.1016/S1464-1917(99)00082-3.
Lee, H.-J., Kim, S.-W., Brioude, J., Cooper, O. R., Frost, G. J., Kim, C.-H., Park, R. J., Trainer, M., & Woo, J.-H. (2014). Transport of NOx in East Asia identified by satellite and in-situ measurements and Lagrangian particle dispersion model simulations. Journal of Geophysical Research: Atmospheres, 119, 2574–2596. doi: 10.1002/2013JD021185.
Levelt, P. F., Van den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser, H., Vries, J. d., Stammes, P., Lundell, J. O. V., & Saari, H. (2006). The Ozone Monitoring Instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1093–1101. doi: 10.1109/TGRS. 2006.872333.
Li, Z., Huffman, T., McConkey, B., & Townley-Smith, L. (2013). Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sensing of Environment, 138, 232–244. doi: 10.1016/j.rse.2013. 07.020.
Lin, M., Fiore, A. M., Horowitz, L. W., Cooper, O. R., Naik, V., Holloway, J., Johnson, B. J., Middlebrook, A. M., Oltmans, S. J., Pollack, I. B., Ryerson, T. B., Warner, J. X., Wiedinmyer, C., Wilson, J., & Wyman, B. (2012). Transport of Asian ozone pollution into surface air over the western United States in spring. Journal of Geophysical Research: Atmospheres, 117, D00V07. doi: 10.1029/2011jd016961.
Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., & Tonnesen, G. (2017). US surface ozone trends and extremes from 1980 to 2014: Quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmospheric Chemistry and Physics, 17, 2943–2970. doi: 10.5194/acp-17-2943-2017.
Liu, J. J., Jones, D. B. A., Worden, J. R., Parrington, M., & Kar, J. (2009). Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument. Journal of Geophysical Research: Atmospheres, 114(D7), 1-15. doi: 10.1029/2008JD010993.
Mansoori, J. (1995). Islamic Republic of Iran. In D. A. Scott (Ed.), A Directory of Wetlands in the Middle East. Retrieved from http://www.earthspace.org/rl/es15056/scd01h.html.
Meul, S., Langematz, U., Oberländer, S., Garny, H., & Jöckel, P. (2014). Chemical contribution to future tropical ozone change in the lower stratosphere. Atmospheric Chemistry and Physics, 14, 2959–2971. doi: 10.5194/acp-14-2959-2014.
Morelli, J. (2011). Environmental sustainability: A definition for environmental professionals. Journal of Environmental Sustainability, 1(1), Article 2. doi: 10.14448/jes.01.0002.
Mousavi, S. S., Farajzadeh, M., Rahimi, Y. G., & others. (2017). Climatic variability of the column ozone over the Iranian plateau. Meteorology and Atmospheric Physics, 129(3), 309–320. doi: 10.1007/s00703-016-0474-9.
Nawrot, T., Nemmar, A., & Nemery, B. (2006). Update in Environmental and Occupational Medicine 2005. American Journal of Respiratory and Critical Care Medicine, 173(9), 948–952. doi: 10.1164/rccm.2601010.
Oberländer, S., Langematz, U., & Meul, S. (2013). Unraveling impact factors for future changes in the Brewer-Dobson circulation. Journal of Geophysical Research: Atmospheres, 118, 10296–10312. doi: 10.1002/jgrd.50775.
Oğuz, K., Ekici, M., & Açar, Y. (2022). Spatial and temporal variation of total column ozone over Turkey with MERRA-2. International Journal of Environment and Geoinformatics, 9(3), 154-164. doi: 10.30897/ijegeo.1039383.
Orsolini, Y. J., Manney, G. L., Santee, M. L., & Randall, C. E. (2003). Summertime low-ozone episodes at northern high latitudes. Geophysical Research Letters, 30(11), 1587. doi: 10.1029/2002GL016706.
Pal, C. (2010). Variability of total ozone over India and its adjoining regions during 1997–2008. Atmospheric Environment, 44(15), 1927–1936. doi: 10.1016/j.atmosenv.2010.01.028.
Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, H., Gilge, S., Scheel, H.-E., Steinbacher, M., & Chan, E. (2013). Lower tropospheric ozone at northern mid-latitudes: Changing seasonal cycle. Geophysical Research Letters, 40, 1631–1636. doi: 10.1002/grl.50303.
Rafiq, L., Tajbar, S., & Manzoor, S. (2017). Long term temporal trends and spatial distribution of total ozone over Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 295-301. doi: 10.1016/j.ejrs.2017.05.002.
Raispour, K., & Asakereh, H. (2019). Satellite Monitoring Of Ozone Layer Changes In The Atmosphere Of Iran. Journal of Natural Environmental Hazards, 8(22), 213-228. doi: 10.22111/ jneh.2019.28381.1490. (In Persian)
Saraf, N., & Beig, G. (2003). Solar response in the vertical structure of ozone and temperature in the tropical stratosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 65(11-13), 1235–1243. doi: 10.1016/j.jastp.2003.08.006.
Scotto, J., Fears, T. R., & Fraumeni, J. F., Jr. (1996). Solar radiation. In D. Schottenfeld & J. F. Fraumeni Jr. (Eds.), Cancer epidemiology and prevention (1st ed., pp. 355–372). Oxford University Press.
Sekiguchi, Y., & Kida, H. (1971). The seasonal variation of total ozone amount in middle latitudes. Journal of the Meteorological Society of Japan, 49(2), 95–110. doi: 10.2151/jmsj1965.49. 2_95.
Sharafati, A., Nabaei, S., & Shahid, S. (2019). Spatial assessment of meteorological drought features over different climate regions in Iran. International Journal of Climatology, 40(3), 1864-1884. doi: 10.1002/joc.6307.
Sharipour, Z., AkbariBidokhti, A. (2014). Investigation of spatial and temporal distributions of air pollutants over Tehran in cold months of 2011-2013. Journal of Environmental Science and Technology, 16(1), 149-166. https://sanad.iau.ir/en/Journal/jest/Article/839712. (In Persian)
Siddiqui, Z. R., Fawz-ul-Haq, K. R., Hussain, S., & Shaheen, L. (2001). Satellite observed distribution and variation of total ozone over Pakistan. In The Sixth Asia-Pacific Conference on Multilateral Cooperation in Space Technology and Applications, Beijing, China, September 18–21.
Sun, L., Xue, L., Wang, T., Gao, J., Ding, A., Cooper, O. R., Lin, M., Xu, P., Wang, Z., Wang, X., Wen, L., Zhu, Y., Chen, T., Yang, L., Wang, Y., Chen, J., & Wang, W. (2016). Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmospheric Chemistry and Physics, 16, 10637–10650. doi: 10.5194/acp-16-10637-2016.
Tang, C., Wu, B., Wei, Y., Qing, C., Dai, C., Li, J., & Wei, H. (2018). The responses of ozone density to solar activity in the mesopause region and the mutual relationship based on SABER measurements during 2002–2016. Journal of Geophysical Research: Space Physics, 123(3), 3039–3049. doi: 10.1002/2017JA025126.
Torbatian, S., Hoshyaripour, A., Shahbazi, H., & Hosseini, V. (2020). Air pollution trends in Tehran and their anthropogenic drivers. Atmospheric Pollution Research, 11(3), 429-442. doi: 10.1016/j.apr.2019.11.015.
van den Oever, A. E. M., Puricelli, S., Costa, D., Thonemann, N., Lavigne Philippot, M., & Messagie, M. (2024). Revisiting the challenges of ozone depletion in life cycle assessment. Cleaner Environmental Systems, 13(June), 100196. doi: 10.1016/j.cesys.2024.100196.
Varotsos, C. A., Chronopoulos, G. J., Katsiki, S., & Sakellariou, N. K. (1995). Further evidence of the role of air pollution on solar ultraviolet radiation reaching the ground. International Journal of Remote Sensing, 16(11), 1883–1886. doi: 10.1080/01431169508954525.
Wargan, K., Labow, G., Frith, S., Pawson, S., Livesey, N., & Partyka, G. (2017). Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis. Journal of climate30(No 8), 2961–2988. doi: 10.1175/JCLI-D-16-0699.1.
Wargan, K., Labow, G., Frith, S., Pawson, S., Livesey, N., & Partyka, G. (2015). The global structure of upper troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data. Journal of Geophysical Research: Atmospheres, 120, 2013-2036. doi: 10.1002/2014JD022493.
World Meteorological Organisation (WMO). (2010). Scientific assessment of ozone depletion: Global ozone research and monitoring project-report No. 52. World Meteorological Organization, Geneva, Switzerland. NOAA CSL: Scientific Assessment of Ozone Depletion: 2010.
World Meteorological Organisation (WMO). (2018). Scientific assessment of ozone depletion: Global ozone research and monitoring project-report No. 52. Geneva, Switzerland. Retrieved from https://www.esrl.noaa.gov/csd/assessments/ozone/.
Yari, A. R., Goudarzi, G., Geravandi, S., Dobaradaran, S., Yousefi, F., Idani, E., ... Mohammadi, M. J. (2016). Study of ground-level ozone and its health risk assessment in residents in Ahvaz City, Iran during 2013. Toxin Reviews, 35(3–4), 201–206. doi: 10.1080/15569543.2016. 1225769.
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., & Zeng, G. (2013). Preindustrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(4), 2063–2090. doi: 10.5194/acp-13-2063-2013.
Zarrin, A., Ghaemi, H., Azadi, M., Mofidi, A., & Mirzaei, E. (2011). The effect of the Zagros Mountains on the formation and maintenance of the Iran Anticyclone using RegCM4. Meteorology and Atmospheric Physics, 112(1-2), 91-100. doi: 10.1007/s00703-011-0134-z.
Zhang, C., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Andrienko, Y., Shulga, V., Han, W., & Shi, Y. (2022). The annual cycle in mid-latitude stratospheric and mesospheric ozone associated with quasi-stationary wave structure by the MLS data 2011–2020. Remote Sensing, 14(23), 2309. doi: 10.3390/rs14102309.
Zhang, Y., Cooper, O. R., Gaudel, A., Thompson, A. M., Nedelec, P., Ogino, S.-Y., & West, J. J. (2016). Tropospheric ozone change from 1980 to 2010 dominated by equatorward re-distribution of emissions. Nature Geoscience, 9(12), 875–879. doi: 10.1038/NGEO2827.
Zhou, R., & Yue-juan, C. (2005). Ozone variations over the Tibetan and Iranian Plateaus and their relationship with the South Asia High. Journal of University of Science and Technology of China. Retrieved from Semantic Scholar.