Spatio – Temporal Estimation of Carbon Monoxide and Nitrogen Dioxide based on Remote Sensing Data and Ancillary Data in Tehran

Document Type : Research Paper

Authors

1 Department of Remote Sensing and Geographic Information System, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran

2 Department of Remote Sensing and Geographic Information System, Faculty of Humanities, Tarbiat Modares University, Tehran, IranIran

Abstract

Air pollution is one of the most important consequences of human activities, which not only threatens human health but also negatively affects all elements of the environment, including plants and animals. Tehran, the capital of Iran, and the administrative, political and economic center of the country, is no exception which is constantly struggling with these hazard. So far, many linear and nonlinear models have been applied to model air pollution. In this research, 8 pollutant measurement stations distributed over Tehran were selected according to the availability of their recorded data. In order to provide a model predicting pollutants, spatially and temporally, the combination of spatial and temporal features extracted of remote sensing data and environmental data was modeled using multilayer perceptron artificial neural network. The input data include meteorological data, topography, traffic index, population data, air pollutant concentrations for the last days, and land use map. In addition, vegetation cover, distance from heat islands, and the land surface temperature derived from remotely sensed data were used as remotely sensed attributes. In order to increase the accuracy of modeling, wavelet transform and feature selection methods were used on input attributes of the model. Random forest feature selection method was applied on the input data in order to reduce the number of input attributes,. The results of the model evaluation indicated that the model was efficient in estimating the concentrations of pollutants. Temporally, carbon monoxide and nitrogen dioxide were predicted with error estimation of 13% and 11.5%, respectively. Besides, these pollutants were spatially predicted with the estimation error less than 17%.

Keywords


آل­شیخ، علی­اصغر؛ قراگوزلو، علیرضا؛ سجادیان، مهیار (1391). بهره‌گیری از شبکة عصبی به­منظور استفاده در فرایند مدیریت ریسک زیست‌محیطی ناشی از آلودگی هوای منتج از ترافیک در کلان‌شهر تهران.جغرافیایی چشم‌انداز زاگرس، 4 (14)، 25-38.
اجتهادی، مرجان (1386). بررسی آلودگی هوای شهری ناشی از سامانة حمل‌ونقل با تأکید بر ذرّات معلّق و ارائة راهکارهای مدیریتی (مطالعة موردی، تهران). دهمین همایش ملّی بهداشت محیط، همدان: دانشگاه علوم پزشکی همدان.
حسینی شفیع، روجا؛ علیمحمدی، عباس؛ قاسمیان یزدی، محمدحسن (1395). ارزیابی آثار موجک پایه و تعداد سطوح تجزیه جهت تخمین نقشة تغییرات با استفاده از الگوریتم موجک. سنجش‌ازدور و GIS ایران، 8 (2)، 17-34.
خبری، زهرا؛ موسویان ندوشن، نرجس السادات؛ نژاد کورکی، فرهاد؛ منصوری، نبی­ا... (1392).  تأثیر مدل رقومی ارتفاعی در مدل‌سازی آلودگی هوا با استفاده از ائرمود (AERMOD).سنجش‌ازدور و سامانة اطّلاعات جغرافیایی در منابع طبیعی، 4 (4)، 25-33.
رفیع­­پور، مهرداد؛ آل­شیخ، علی­اصغر؛ علیمحمدی سراب، عباس؛ صادقی نیارکی، ابوالقاسم (1392). مدل‌سازی مکانی غلظت منواکسید کربن در تهران با استفاده از رگرسیون چندمتغیّره و شبکه­های عصبی. همایش ملّی ژئوماتیک، 20. تهران: دانشگاه آزاد اسلامی.
شرعی­پور، زهرا (1388). بررسی تغییرات فصلی و روزانة آلاینده­های هوا و ارتباط آن با پارامترهای هواشناسی. مجلّة فیزیک زمین و فضا، 35 (2)، 119-137.
شرکت کنترل کیفیت هوای تهران (1395). گزارش سالانة کیفیت هوای تهران در سال 1394. تهران: شهرداری تهران.
عبودی، محمدرضا؛ کرمی، جلال؛ شمس‌الدینی، علی (1394). مدل‌سازی خطّی و غیر خطّی آلاینده­های هوای شهر تهران با استفاده از خصیصه­های محیطی و ترافیک.  اوّلین کنفرانس ملّی مهندسی فنّاوری اطّلاعات مکانی. تهران: دانشگاه صنعتی خواجه نصیر طوسی.
متکان، علی‌اکبر؛ شکیبا، علیرضا؛ پورعلی، سید حسین؛ بهارلو، ایمان (1388). تعیین تغییرات مکانی و زمانی آلودگی­های منواکسید کربن و ذرّات معلّق با استفاده از تکنیک­های GIS در شهر تهران.سنجش‌ازدور و GIS ایران، 1(1)، 57-72.
References
Aboodi, M., Karami, J. & Shamsoddini, A. (2015). Linear and nonlinear modeling of air pollutants in Tehran using environmental and traffic characteristics. In: First National Conference on Spatial Information Technology Engineering. Tehran: K. N. Toosi University of Technology. (In Persian)
Agirre-Basurko, E., Ibarra-Berastegi, G. & Madariaga, I. (2006). Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environmental Modelling & Software, 21 (4), 430-446.
Alesheikh, A., Qara Gozlu, A. & Sajjadian, M. (2012). Use of neural network for use in environmental risk management process due to air pollution caused by traffic in Tehran metropolis. Zagros Landscape Geography and Planning, 4 (14), 25-38.(In Persian)
Alimissis, A., Philippopoulos, K., Tzanis, C. G. & Deligiorgi, D. (2018). Spatial estimation of urban air pollution with the use of artificial neural network models. Atmospheric environment, 191, 205-213.
Artis, D. A. & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12 (4), 313-329.
Chen, G., Knibbs, L. D., Zhang, W., Li, S., Cao, W., Guo, J., ... & Hamm, N. A. S. (2018). Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environmental pollution, 233, 1086-1094.
Chelani, A. B., Rao, C. C., Phadke, K. M. & Hasan, M. Z. (2002). Prediction of sulphur dioxide concentration using artificial neural networks. Environmental Modelling & Software, 17 (2), 159-166.
Coulibaly, P., Dibike, Y. B. & Anctil, F. (2005). Downscaling precipitation and temperature with temporal neural networks. Journal of Hydrometeorology, 6 (4), 483-496.
Ejtehadi, M. (2007). Investigation of urban air pollution caused by transportation system with emphasis on suspended particles and presentation of management solutions (Case study, Tehran). In: 10th National Conference on Environmental Health. Hamadan: Hamadan University of Medical Sciences. (In Persian)
Elangasinghe, M. A., Singhal, N., Dirks, K. N. & Salmond, J. A. (2014). Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmospheric Pollution Research, 5 (4), 696-708.
Gardner, M. W. & Dorling, S. R. (1999). Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33 (5), 709-719.
Grgurić, S., Krizan, J., Gasparac, G., Antonic, O., Spiric, Z.; Mamouri, R. E., Christodoulou, A.; Nisantzi, A., Agapiou, A., Themistocleous, K., Fedra, K., Panayiotou, C. & Hadjimitsis, D. (2014). Relationship between MODIS based Aerosol Optical Depth and PM10 over Croatia. Central European Journal of Geosciences. 6 (1), 2-16.
Hewitt, C. N. (1991). Spatial variations in nitrogen dioxide concentrations in an urban area. Atmospheric Environment. Part B. Urban Atmosphere, 25 (3), 429-434.
Hosseini Shafi, R., Ali Mohammadi, A. & Qasemian Yazdi, M. (2016). Evaluation of base wavelet effects and number of decomposition levels to estimate change map using wavelet algorithm. Iranian Remote sensing & GIS, 8 (2), 17-34. (In Persian)
Hrust, L., Klaić, Z. B., Križan, J., Antonić, O. & Hercog, P. (2009). Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmospheric Environment, 43 (35), 5588-5596.
Karatzas, K. D. & Kaltsatos, S. (2007). Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece. Simulation Modelling Practice and Theory, 15 (10), 1310-1319.
Khabari, Z., Mousavian Nodoshan, N., Nejad Korki, F. &  Mansoori, N. (2013). The effect of digital elevation model on air pollution modeling using AERMOD. Remote sensing and GIS in natural resources, 4 (4), 25-33.(In Persian)
Kharytonov, M. M., Khlopova, V. M., Stankevich, S. A. & Titarenko, O. V. (2013). Remote and ground-based sensing of air polluted by nitrogen dioxide in the Dnepropetrovsk region (Ukraine). In Disposal of Dangerous Chemicals in Urban Areas and Mega Cities (pp. 291-298). Springer, Dordrecht.
Knelson, J. H. & Lee, R. E. (1977). Oxides of nitrogen in the atmosphere: origin, fate and public health implications. Ambio, 6 (2/3), 126-130.
Koller, D. & Sahami, M. (1996). Toward optimal feature selection. Stanford InfoLab.
Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., ... & Cawley, G. (2003). Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment, 37 (32), 4539-4550.
Mao, L., Qiu, Y., Kusano, C. & Xu, X. (2012). Predicting regional space–time variation of PM 2.5 with land-use regression model and MODIS data. Environmental Science and Pollution Research, 19 (1), 128-138.
Martin, R. V. (2008). Satellite remote sensing of surface air quality. Atmospheric environment, 42 (34), 7823-7843.
Matkan, A., Shakiba, A., Pour Ali, S. & Baharlou, I. (2009). Determination of spatial and temporal variations of carbon monoxide and particulate pollutants using GIS techniques in Tehran. Iranian Remote sensing & GIS, 1 (1), 57-72. (In Persian)
McKendry, I. G. (2002). Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2. 5) forecasting. Journal of the Air & Waste Management Association, 52 (9), 1096-1101.
Montero-Lorenzo, J. M., Fernández-Avilés, G., Mondéjar-Jiménez, J. & Vargas-Vargas, M. (2013). A spatio-temporal geostatistical approach to predicting pollution levels: The case of mono-nitrogen oxides in Madrid. Computers, Environment and Urban Systems, 37, 95-106.
Nisantzi, A., Hadjimitsis, D. G., Akylas, E., Agapiou, A., Panayiotou, M., Michaelides, S., & Paronis, D. (2013). Study of air pollution with the use of modis data, lidar and sun photometers in Cyprus. In Advances in Meteorology, Climatology and Atmospheric Physics (pp. 1133-1139). Springer, Berlin, Heidelberg.
Perez, P. & Trier, A. (2001). Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile. Atmospheric Environment, 35 (10), 1783-1789.
Pfeiffer, H., Baumbach, G., Sarachaga-Ruiz, L., Kleanthous, S., Poulida, O. & Beyaz, E. (2009). Neural modelling of the spatial distribution of air pollutants. Atmospheric Environment, 43 (20), 3289-3297.
Rafiepour, M., Alesheikh, A., Ali Mohammadi Sarab, A. & Sadeghi Niaraki, A. (2013). Spatial modeling of carbon monoxide concentration in Tehran using multivariate regression and neural networks. In: National Geomatics Conference. Tehran: Islamic Azad University. (In Persian)
Shamsoddini, A., Aboodi, M. R. & Karami, J. (2017). Tehran air pollutants prediction based on random forest feature selection method. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 483-488.
Shamsoddini, A., Raval, S. & Taplin, R. (2014). Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 75-79.
Sharie pour, Z. (2009). Investigation of seasonal and daily changes of air pollutants and its relationship with meteorological parameters. Journal of Earth and Space Physics, 35 (2), 119-137. (In Persian)
Shi, J. P. & Harrison, R. M. (1997). Regression modelling of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 31 (24), 4081-4094.
Snyder, W. C., Wan, Z., Zhang, Y. & Feng, Y. Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19 (14), 2753-2774.
Siwek, K. & Osowski, S. (2012). Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors. Engineering Applications of Artificial Intelligence, 25 (6), 1246-1258.
Tehran Air Quality Control Company (2016). Annual Report of Tehran Air Quality In 1394. Tehran: Municipality of Tehran. (In Persian)
Tomczak, M. (1998). Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis, 2 (2), 18-30.
Zhang, H., Wu, W. & Yao, M. (2012 a). Boundedness and convergence of batch back-propagation algorithm with penalty for feedforward neural networks. Neurocomputing, 89, 141-146.
Zhang, Y., Yiyun, C., Qing, D. & Jiang, P. (2012 b). Study on urban heat island effect based on Normalized Difference Vegetated Index: A case study of Wuhan City. Procedia environmental sciences, 13, 574-581.