Deforestation Risk Zoning Using Analytical Hierarchy Process

Document Type : Research Paper

Authors

1 Department of Forestry, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran

2 Department of Forestry, The Center for R&D of Northern Zagros Forestry, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran

3 Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, Iran

Abstract

This study aimed to identify the most influential factors in deforestation using multi-criteria decision-making method in a part of northern Zagros forests in Iran with a total area of 9177 hectares. Identifying the most important factors affecting deforestation, these factors were classified into three main criteria: human factors, natural factors and physiographic factors. By establishing hierarchical structure and performing pairwise comparisons, we determined the weight and importance of the main criteria and the sub-criteria. The final weight of each of the ten sub-criteria was extracted by combining the opinions of experts. After preparing the maps related to each of the sub-criteria, these maps were converted into standardized scale maps using the linear scale conversion method. In the final step, with the overlapping and integration of all sub-criteria maps, the zoning map of areas susceptible to deforestation was prepared in four groups with low risk, medium risk, high risk and very high risk. According to the results, 3.25% of the territory was located in very high-risk, 55.92% in high-risk, 40.45% in moderate-risk and 0.38% in low-risk zone. Accuracy assessment was done by comparing the deforestation risk zoning map with real deforestation map of the study area. The results showed that 77.81% of the areas that has deforested in this period was located in high-risk and very high-risk zones. This amount of accuracy supported the efficiency of Multi Criteria Decision Making Method in deforestation zoning. Similar studies confirm the effectiveness of multi-criteria decision analysis systems and the presentation of GIS-based models in deforestation risk zoning.
 
Keywords: Deforestation, Group Decision Making, Multi Criteria Decision Making, Zagros Forests
Extended Abstract:
 
Introduction:
 The zoning of areas susceptible to deforestation is very considerable to direct conservation and regeneration activities of natural resources planners and decision-makers in endangered zones. Hierarchical analysis process is one of the most common methods of multi-criteria decision analysis that is widely used in zoning high-risk areas. This study aimed to identify the most influential factors in deforestation using multi-criteria decision-making method in a part of northern Zagros forests in Iran.
Materials and Methods:
 In the first step, the factors affecting deforestation were identified based on the opinion of experts and a literature review. These factors were classified into three main criteria: human factors (population density, livestock density, distance from residential areas, distance from roads, distance from farmlands and gardens), natural factors (forest density, distance from waterways) and physiographic factors (slope, aspect, evaluation). The maps of these criteria were prepared and each map was classified into several classes according to the range of maps and the opinions of experts. The maps of each sub-criteria were standardized using the linear scale conversion method. Establishing hierarchical structure and performing pairwise comparisons, we determined the weight and importance of the main criteria and the sub-criteria. The final weight of each of the ten sub-criteria was extracted by combining the opinions of experts. After preparing the maps related to each of the sub-criteria, these maps were converted into standardized scale maps using the linear scale conversion method. After multiplying the weights of each criteria by the standardized weight of each layer, standard weighted layers were created. Then the standardized maps of the criteria were overlayed and integrated. In the final step, medium risk, high risk and very high risk, the deforestation risk zoning map was prepared by standardizing the final map and classifying it into four classes with low risk. Comparing the deforestation zoning map with the ground truth map of deforestation in the study area, the accuracy assessment of deforestation risk zoning was done.
Results and Discussion:
 The results showed that physiographic factors had the highest weight among the main criteria. The high importance of physiographic factors is due to the role and effect of this factor in limiting access to forest areas. After physiographic factors, human factors and natural factors are important in the next degrees, respectively. Among the physiographic factors, three sub-criteria of elevation, slope and aspect were examined, which according to expert’s opinion, the slope criterion is the most important. Among the sub-criteria of human factors that are of secondary importance, the sub-criteria of population density and distance from the road have the highest weight, respectively. Other researchers have also pointed to a significant relationship between population density and the rate of deforestation and emphasize the role of aggravating factors in forest access such as distance from residential areas and roads in the amount of forest cover. In the group of natural factors, which includes two sub-criteria of distance from drains and tree density (number of trees per hectare), the sub-criterion of distance from drains was more important than other sub-criteria of this group.
 According to the results, 3.25% of the territory was located in very high-risk, 55.92% in high-risk, 40.45% in moderate-risk and 0.38% in low-risk zone. Accuracy assessment was done by comparing the deforestation risk zoning map with real deforestation map of the study area. The results showed that 77.81% of the areas that has deforested in this period was located in high-risk and very high-risk zones. This amount of accuracy supported the efficiency of Multi Criteria Decision Making Method in deforestation zoning. Similar studies confirm the effectiveness of multi-criteria decision analysis systems and the presentation of GIS-based models in deforestation risk zoning.
Conclusion:
According to the present study, combining hierarchical analysis and GIS is an effective tool for deforestation risk zoning. According to the zoning map, about 60% of the total area is in a high and very high-risk zone. Therefore, the concentration of conservation activities in critical areas is very important to prevent the continuation of the process of deforestation. Easy access and low slopes areas are the most prone to landuse change. The problem of increasing population and thus increasing the demand for conversion of forests into agricultural lands and man-made areas can be considered as the most important reason for the degradation of easily accessible forests.

Keywords

Main Subjects


آرخی، صالح؛ جعفرزاده، علی­اکبر؛ یوسفی، صالح (1391). شبیه­سازی تخریب جنگل با استفاده از رگرسیون لجستیک، GIS و سنجش­ازدور (مورد: جنگل­های شمال ایلام). جغرافیا و توسعه، 10 (29)، 31-42.
امینی، محمدرشید؛ شتایی جویباری، شعبان؛ معیری، محمدهادی؛ غضنفری، هدایت­ا... (1385). بررسی امکان مدل‌سازی احتمال تخریب جنگل­های غرب کشور با استفاده از GIS و RS (مطالعة موردی: جنگل­های آرمرده بانه). تحقیقات جنگل و صنوبر ایران، 16 (3)، 431-443.
باقری، رضا؛ شتایی جویباری، شعبان (1389). مدل­سازی کاهش گسترة جنگل با استفاده از رگرسیون لجستیک (مطالعة موردی: حوضة آبخیز چهل­چای استان گلستان). مجلّة جنگل ایران، 2 (3)، 243-252.
پورهاشمی، مهدی (1382). بررسی تجدید حیات طبیعی گونه­های بلوط در جنگل­های مریوان. رسالة دکتری جنگل‌داری، تهران: دانشگاه تهران.
پیرباوقار، مهتاب (1383). بررسی تغییرات گسترة جنگل در ارتباط با عوامل توپوگرافی و مناطق انسان­ساخت (مطالعة موردی: جنگل­های شرق استان گیلان). پایان­نامة کارشناسی­ارشد جنگل­داری، تهران: دانشگاه تهران.
جزیره­ای، محمدحسین؛ ابراهیمی رستاقی، مرتضی (1382). جنگل­شناسی زاگرس. تهران: دانشگاه تهران.
رضایی بنفشه، مجید؛ رستم­زاده، هاشم؛ فیضی­زاده، بختیار (1384). بررسی و ارزیابی روند تغییر سطوح جنگل با استفاده از سنجش­ازدور و GIS (مطالعة موردی جنگل­های ارسباران 2005- 1987). پژوهش­های جغرافیایی، 62 (4)، 143-159.
رنجبر، ابوالفضل (1381). بررسی و برآورد روند تخریب جنگل­ها با استفاده از GIS و داده­های سنجش­ازدور. پایان‌نامة کارشناسی ارشد سیستم اطّلاعات جغرافیایی، دانشگاه صنعتی خواجه نصیرالدین طوسی.
غضنفری، هدایت­ا...؛ نمیرانیان، منوچهر؛ سبحانی، هوشنگ؛ مروی مهاجر، محمدرضا؛ پورطهماسبی، کامبیز (1382). برآورد رویش قطری درختان وی­ول (Quercus libani) در منطقة زاگرس شمالی (مطالعة موردی: هواره خول). مجلّة منابع طبیعی ایران، 57 (4)، 649- 662.
قدسی­پور، حسن (1384). فرایند تحلیل سلسله­مراتبی (AHP). تهران: دانشگاه صنعتی امیرکبیر.
مرادی، رستگار (1388). بررسی ساختار و بررسی تغییرات گسترة جنگل در زاگرس شمالی با استفاده از تصاویر ماهواره­ای SPOT5 (مطالعة موردی: جنگل­های بانه). پایان­نامة کارشناسی ارشد جنگل­داری، سنندج: دانشگاه کردستان.
مرکز پژوهش و توسعة جنگل­داری زاگرس شمالی (1384). طرح جنگل­داری چندمنظوره با تأکید بر سامان­دهی و مدیریت گلازنی در حوضة آرمرده. سنندج: دانشگاه کردستان.
مهدوی، علی؛ رنگین، سمیه، مهدی­زاده، حسین؛ میرزایی­زاده، وحید (1397). مدل­سازی تخریب جنگل­های زاگرس با استفاده از رگرسیون لجستیک (مطالعة موردی: جنگل­های چرداول استان ایلام). جغرافیا و پایداری محیط، 8 (27)، 1-13.
ناصری، حمیدرضا؛ عزیزخانی، محمدجواد؛ مکنونی، سعید (1388). تلفیق سیستم­های تصمیم­گیری چندمعیاری و اطّلاعات جغرافیایی در مکان­یابی محل­های مناسب پخش سیلاب جهت تغذیة مصنوعی (مطالعة موردی: دشت چاه­دراز- سیرجان). فصلنامة زمین­شناسی ایران، 10 (3)، 97-105.
نکوئی­مهر، محمد؛ رأفت­نیا، نصرت­ا...؛ رئیسیان، روانبخش؛ جهانبازی، حسن؛ طالبی، محمود؛ عبدالهی، خدایار (1385). تأثیر جاده­سازی بر تخریب جنگل­های منطقة بازفت. تحقیقات جنگل و صنوبر ایران، 14 (3)، 228- 243.
یزدانی، سعید؛ عباسی، اکرم (1389). برآورد ارزش اقتصادی منافع زیست­محیطی جنگل­ها (مطالعة موردی: بخش نمخانة جنگل خیرود در شهرستان نوشهر). مجلّة تحقیقات اقتصاد کشاورزی، 2 (7)، 33-54.
References
Amini, M. R., Shataee Jooybari, Sh., Moaieri, M. H. & Ghazanfari, H. (2009). Deforestation modeling and investigation on related physiographic and human factors using satellite images and GIS (Case study: Armerdeh forests of Baneh). Iranian Journal of Forest and Poplar Research, 16 (3), 431-443. (In Persian)
Arekhi, S., Jafarzadeh, A. A. & Yousefi, S. (2013). Modelling deforestation using logistic regression, GIS and RS (Case study: Northern forests of the Ilam Provinc). Geography and Development, 10 )29(, 31-42. (In Persian)
Bagheri, R. & Shataee Jooybari, Sh. (2010). Modeling forest areas decreases, using logistic regression (case study: Chehl-Chay catchment, Golestan province). Iranian Journal of Forest, 12 (3), 243-252. (In Persian)
Chandio, I.A., Matori, A.N.B. & WanYusof, K.B. (2013). GIS-based analytic hierarchy process as a multicriteria decision analysis instrument: a review. Arabian Journal of Geosciences, 6, 3059-3066.
Cóndor, R. D., Scarelli, A. & Valentini, R. (2011). Multicriteria Decision Aid to Support Multilateral Environmental Aggrements in Assessing International Forestry Projects. International Environmental Aggrements: Politics, Law and Economics, 11, 117-137.
Drobne, S. & Liesc, A. (2009). Multi-attribute decision analysis in GIS: Weighted linear combination and ordered weighted averaging. Informatica, 33 (4), 459-474.
Etter, A., McAlpine, C., Wilson, K., Phinn, S. & Possingham, H. (2006). Regional Patterns of Agricultural Land Use and Deforestation in Colombia. Agriculture, Ecosystems and Environment 114, 369-386.
Fagua, J. C., Baggio, J. A. & Ramsey, R. D. (2019). Drivers of forest cover changes in the Choco-Darien Global Ecoregion of South America. Ecosphere, 10 (3), 1-21.
Ghazanfari, H., Namiranian, M., Sobhani, M. & Marvi Mohajer, M. R. (2004). Traditional Forest Management and its Application to Encourage Public Participation in the Northern Zagros Mountain of Kurdistan Province, Iran. Scandinavian Journal of Forest Science, 19 (4), 65-71.
Ghazanfari, H., Namiranian, M., Sobhani, M., Marvi Mohajer, M. R. & Pourtahmasi, K. (2005). An estimation of tree diameter growth of Lebanon oak (Quercus libani) in northern Zagros forests (Case study, Havareh Khole). Iranian Journal of Natural Resources, 57 (4), 649-662. (In Persian)
Ghodsipour, H. (2005). Analytical Hierarchy process. Tehran: Amirkabir University of Technology. (In Persian)
Gibbs, J. P. (1998). Distribution of Woodland Amphibians along a Forest Fragmentation Gradient. Landscape Ecology, 13 (4), 263- 268.
Gorte, R. W. & Sheikh, P. A. (2010). Deforestation and Climate Changing. CRS Report for Congress, Washington, DC.
Grashof-Bokdman, C. (1997). Forest Species in an Agricultural Landscape in the Netherlands: Effect of Habitat Fragmentation. Journal of Vegetation Science, 8 (1), 21-28.
Jazirehi, M. H. & Ebrahimi Rostaghi, M. (2004). Silviculture in Zagros. Tehran: University of Tehran. (In Persian)
Kučas, A. (2010). Location Prioritization by Means of Multicriteria Spatial Decision-support Systems: A Case Study of Forest Fragmentation-based Ranking of Forest Administrative Areas. Journal of Environmental Engineering and Landscape Management, 18 (4), 312- 320.
Mahdavi, A., Rangin, S., Mahdizadeh, H. & Mirzaiizadeh, V. (2018). Modelling deforestation of Zagros forests using logistic regression (Case study: Chardavol forests of the Ilam Provinc). Geography and Sustainable Environment, 27, 1-13. (In Persian)
Makropoulos, C., Butler, D. & Maksimovic, C. (2003). A Fuzzy Logic Spatial Decision Support System for Urban Water Managmnent. Water Resource Planning Management, 129 (1), 69-77.
Malczewski, J. (2004). Gis-based multicriteria decision analysis: a Survey of the Literature. International Journal of Geographical Information Science, 20 (7), 703- 726.
Moradi, R. (2010). Investigation of the structure and extent of forest changes in the northern Zagros using SPOT5 satellite images (Case study: Baneh forests). M.Sc thesis in Forestry: University of Kurdistan. (In Persian)
Naseri, H. R., Azizkhani M. J. & Maknouni, S. (2009). Investigation of GIS and MCDM for selection of appropriate site for artificial recharge (Case study: Chahaderaz region, Kerman Province), Iranian Journal of Geology, 10 (3), 97-105. (In Persian)
Nekooimehr, M., Rafatnia, N., Raisian, R., Jahanbazi, H., Talebi, M. & Abdolahi, Kh. (2006). Impact of road construction on forest destruction in Bazoft region, Iranian Journal of Forest and Poplar Research, 14 (3), 228-243. (In Persian)
Pir Bavaghar, M. (2005). Investigation of forest area changes in relation to topographic factors and man-made areas (Case study: forests of eastern Gilan province). M.Sc thesis in Forestry: University of Tehran. (In Persian)
Pir Bavaghar, M. (2015). Deforestation modelling using logistic regression and GIS. Journal of Forest Science, 61 (5), 193-199.
Pir Bavaghar, M., Ghazanfari, H. & Rahimi, S. (2019). Comparison of analytical hierarchy process and fuzzy method in deforestation risk zoning. ISPRS – in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. (pp. 851-856), Tehran: ISPRS-archives.
Pokhriyal, P., Rehman, S., Areendran, G., Raj, K., Pandey, R., Kumar, M., Sahana, M. & Sajjad, H. (2020). Assessing forest cover vulnerability in Uttarakhand, India using analytical hierarchy process. Modeling Earth Systems and Environment, 6, 821-831.
Pourhashemi, M. (2005). Investigation of natural regeneration of oak species in Marivan forests. M.Sc thesis in Forestry: University of Tehran. (In Persian)
Ranjbar, A. (2003). Investigation and estimation of forest degradation trends using GIS and remote sensing data, M.Sc thesis in Geographic information system, Khajeh Nasir Toosi University of Technology. (In Persian)
Rezaei Banafsheh, M., Rostamzadeh, H. & Feyzzadeh, B. (2008). The study and evaluation of the trend of forest surface changes using the remote sensing and GIS: a case study of Arasbaran forests (1987-2005). Geographical Research Quartely, 39 (62), 143-159. (In Persian)
The center for research and development of northern Zagros forests (2005). Multi-purpose forestry plan with emphasis on the organization and management of Galazni in Armardeh area. Sanandaj: University of Kurdistan. (In Persian)
Tucker, C.M., Munroe, D.K., Nagendra, H. & Southworth, J. (2005). Comparative spatial analyses of forest conservation and change in Honduras and Guatemala. Conservation and Society, 3 (1), 174-200.
Voight, C., Hernandez-Aguilar, K., Gutierrez, S., & Garcia, Ch. (2018). Utilizing GIS and remote sensing to inform spatial conservation planning: assessing vulnerability to future tropical forest loss in southern Belize, Proceedings, 2 (337), 1-6.
Yazdani, S. & Abbasi, A. (2010). Estimating Economic and Environmental Values of Forests: A Case Study of Kheirood Forest in Novshahr. Journal of Agricultural Economics Research, 2 (7), 33-54. (In Persian)
Zhang, Q., Devers, D., Desch, A., Justice, Ch. & Townshend, J. (2003). Mapping Tropical Deforestation in Central Africa. Environmental Monitoring and Assesment, 101, 69- 83.