Statistical – Synoptic Analysis of the First Effective Precipitation in the Western and Northwestern of Iran

Document Type : Research Paper

Authors

Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran

Abstract

One of the most important issues related to rainfed wheat cultivation is the date of the First Effective Precipitation (FEP) which can provide soil moisture for cultivation. The current study aims to evaluate the variability and probable trend in the date of the first effective precipitation and the synoptic conditions that lead to its occurrence in northwestern and western Iran. Therefore, precipitation data were extracted from Iran’s Meteorological Organization. First precipitation with a value of at least 5 mm and duration of one to two consecutive days, associated with another precipitation occurring less than 10 days apart, was selected as the first effective precipitation. Then, the trend of first effective precipitation was investigated using Man-Kendall test and linear regression method. Finally, geopotential height, wind speed and humidity data (ERA-Interim) at 850 and 500 hPa levels were obtained from ECMWF website to identify synoptic patterns of the first effective precipitation by cluster analysis method. The findings reveal that more than 90% of the first effective precipitation has occurred during October. Accordingly, Ardebil, Sanandaj, Khorramabad, Kermanshah, Zanjan, Orumieh, Tabriz and Hamadan stations had earliest climatic average of the first effective precipitation date during the period of 1987 to 2016, respectively. Despite the high annual variations regarding the occurrence date of first effective precipitation, evaluating the trend of the first effective precipitation by Mann-Kendall test at the significant level of 5% show that there is no significant trend in all studied stations. Furthermore, synoptic patterns including the short trough, omega block, cutoff low and the Mediterranean long trough are identified as responsible patterns on the occurrence date of the first effective precipitation. Among the patterns, omega block has been associated with widespread rainfall at the studied stations due to greater access to moisture and unstable conditions caused by the cold weather.
Extended Abstract
1-Introduction
Start date, especially for the first effective precipitation, is considered as one of the most important features of precipitation. Depending on its application, effective precipitation has different definitions in different sciences. In summary, the start date of the first effective precipitation is defined as the time when it reaches a total volume of 15 mm in the first month of the water year.
Literatures review displayed that among different factors, the first effective precipitation has the most correlation with cultivation date especially for rainfed crops. Hence, the present study mainly aims to statistical-synoptic analysis of atmospheric patterns leading to the first effective rainfall under in west and northwest of Iran.
2-Materials and Methods
Two types of data were used in order to fulfill the goal of research: a) precipitation data sets of the surveyed stations obtained from the Iranian Meteorological Organization during 1987-2016 statistical period. b) upper air data sets including geopotential height, specific humidity and zonal and meridional wind components obtained from the European Center for Medium- Range Weather Forecasts (ECMWF) at 850 and 500 hpa from 0 to 80º E longitude and 10 to 70º N latitude with a resolution of 2.5º×2.5º.
Initially, First precipitation with a value of at least 5 mm and duration of one to two consecutive days, associated with another precipitation occurring less than 10 days apart, was considered as the First Effective Precipitation (FEP). Accordingly, the occurrence date of the first effective precipitation was specified and then converted to the Julian day (October 1st was taken as the first day of Julian calender). Then, the trend of changes in Julian day time series was investigated using trend analysis test including nonparametric Mann-Kendall test and linear regression method. Finally, based on climatic mean and Weibull distribution at the 75% probability level, the date occurrence of first effective precipitation was determined for each station.
3-Results and Discussion
After determining the first 5 mm and more than 5 mm effective precipitation, the synoptic patterns of these precipitations were extracted at 500 hPa atmospheric levels. To do so, an 825×95 matrix (825 dots and 95 days) was formed. Then, correlation based cluster-hierarchical analysis was used to extract map patterns. At the final step, the extracted patterns were selected by post-processing and then a representative day was chosen from each pattern for drawing maps and interpreting the atmospheric circulation conditions.
Of the 240 effective precipitation events during the 1987 to 2016 statistical period 166, 63 and 11 occurred in October, November, and December. Finally, respectively in all stations in question, 95 shared and non-shared days were specified from the total first effective precipitation in all stations. Most of the first effective precipitations were single-station. After that, most of the common days were observed in 2 and 3 stations with frequency of 16 and 15, respectively.
Statistical analysis of the time trend of the first effective precipitation date showed that Tabriz, Sanandaj and Ardabil stations have had a positive trend. Accordingly, the first effective precipitation was associated with time delay and occurred later. On the other hand, Hamadan, Zanjan, Orumieh, Kermanshah and Khorramabad stations have shown negative trends, respectively. The negative gradient indicates a decreasing trend in the first precipitation date and the earliest effective rainfall was observed at these stations. Julian day trend by Mann-Kendall test at the significance level of 5% presented that the time variations in all stations were not significant at the 5% level. Moreover, annual variations in the first effective precipitation do not follow a specific pattern and the differences between each year have been reduced only within certain time intervals in each station. In general, all stations have been similar in terms of reducing differences in the date of the annual first effective precipitation. Furthermore, the least annual variations were observed in Ardabil, Sanandaj, Kermanshah, Khorramabad, Hamadan, Tabriz and Orumieh stations, respectively. Statistical analysis of the mean date at each station during the rainfall periods showed that the earliest start of precipitation occurred at Ardebil, Zanjan, Orumieh, Sanandaj, Khorramabad and Kermanshah stations, respectively. On the other hand, the latest precipitation was also related to Tabriz and Hamedan stations, respectively.
Synoptic patterns including the short trough, omega block, cutoff low and the Mediterranean long trough were identified as responsible patterns on first effective precipitation date. The moisture source of all four patterns was the North Indian Ocean (Arabian and Red Seas) and the Mediterranean Sea, respectively. The results also represented that the identified patterns have the following characteristics:

Pattern 1 has the highest frequency of effective precipitation with heavy rainfalls and daily high average.
Patterns 2 and 3 have the highest frequency of concurrent rainfalls between the studied stations.
Pattern 4 has the lowest frequency, with the heaviest rainfalls after pattern 1.

4-Conclusion
The current study aims to determine variability and the probable trend of the history of effective precipitation and their synoptic patterns in northwest and west of Iran. The findings demonstrate that more than 90% of the first effective precipitation occurred during October. Khorramabad, Kermanshah, Zanjan, Orumieh, Tabriz and Hamadan stations had earliest climatic average of the first effective precipitation date during the period of 1987 to 2016, respectively. The maximum and the minimum annual differences in the history of events were observed at the stations of Urmia and Ardabil, respectively. Furthermore, synoptic patterns including the short trough, omega block, cutoff low and the Mediterranean long trough were identified as responsible patterns on the occurrence date first effective precipitation. Among the patterns, omega block has been associated with widespread rainfall in all studied stations due to greater access to moisture and unstable conditions caused by the cold weather.

Keywords

Main Subjects


ابراهیمی، قنبر (1396). برآورد بارش مؤثّر و محاسبة نیاز آبی کشتزار برنج در استان مازندران و پهنه‌بندی آن بر اساس روش­های AHP،TOPSISو VIKOR. پایان‌نامة کارشناسی­ارشد، دانشگاه محقّق اردبیلی.
احمدالی، خالد؛ حسینی­پژوه، نازگل؛ لیاقت، عبدالمجید (1394). تعیین زمان بهینة کشت گندم دیم در استان کردستان. نشریة زراعت (پژوهش و سازندگی)، 28 (4)، 18-9.
احمدوند، محمدرحیم؛ نجف‌پور ذبیح­اله (1389). بررسی سطح زیر‌کشت، تولید و سیاست‌های حمایتی گندم طی برنامه‌های اوّل تا چهارم توسعه. پژوهش‌ها و سیاست‌های اقتصادی، 18(53)، 59-73.
امیدوار، کمال؛ صفرپور، فرشاد؛ محمودآبادی، مهدی؛ الفتی، سعید (1389). تحلیل همدیدی اثرهای سردچال در وقوع بارش‌های شدید در نواحی مرکز و جنوب غرب ایران. برنامه‌ریزی و آمایش فضا، 14 (4)، 161-191.
بازگیر، سعید؛ کریمی، مصطفی؛ جعفری، ایوب (1398). ارتباط الگوهای همدید بارش مؤثّر با تاریخ کشت و عملکرد گندم دیم در کرمانشاه. مجلّة جغرافیای طبیعی، 51 (1)، 73-86.
پروین، نادر (1394). بررسی الگوهای بزرگ‌مقیاس گردش جوّی مرتبط با وقوع توفان‌های شدید حوضة آبریز زاب. نشریة تحقیقات کاربردی علوم جغرافیایی، 15 (39)، 33-55.
جعفری، ایوب (1396). تحلیل همدیدی تخمین عملکرد کشت گندم دیم در استان کرمانشاه. پایان‌نامة کارشناسی­ارشد اقلیم‌شناسی، دانشگاه تهران.
حق‌پرست، رضا (1392).اصول زراعت گندم دیم (آمیختة دانش جدید و بومی). تهران: آموزش و ترویج کشاورزی.
خورشید­دوست، علی‌محمد؛ مفیدی، عباس؛ رسولی، علی‌اکبر؛ آزرم، کامل (1395). تحلیل همدیدی سازوکارهای وقوع بارش‌های سنگین بهاره در شمال غرب ایران. مجلّة مخاطرات محیط طبیعی، 5 (8)، 53-82.
خوشحال­ دستجردی، جواد؛ نظری، عبدالقدیر؛ عبدالعظیم، فانقرمه؛ فلاحی، حسین‌علی (1394). پیش‌بینی آماری - سینوپتیکی وقوع ریزش باران در زمان کاشت و برداشت گندم دیم در شهرستان گنبد کاووس. مجلّة آمایش جغرافیایی فضا، 5 (16)، 165-181.
دین‌پژوه، یعقوب؛ موحددانش، علی‌اصغر (1375). تعیین مناطق مساعد برای تولید غلات دیم با توجّه به بارش­های ماهانه (در آذربایجان شرقی، غربی، اردبیل). نیوار، (3)، 25-38.
رسولی، علی‌اکبر؛ قاسمی گلعذانی، کاظم؛ سبحانی، بهروز (1384). نقش بارش و ارتفاع در تعیین مناطق مساعد برای کشت گندم دیم با استفاده از سامانة اطّلاعات جغرافیایی (مورد مطالعه: استان اردبیل). مجلّة جغرافیا و توسعه، 3 (5)، 183-199.
رسولی، علی‌اکبر؛ سبحانی، بهروز (1386). نقش بارندگی در تعیین مناطق مساعد و تاریخ مناسب کشت گندم دیم در استان اردبیل. فصلنامة تحقیقات جغرافیایی، 20 (3)، 102-117.
رفعتی، سمیه؛ حجازی­زاده، زهرا؛ کریمی، مصطفی (1393). تحلیل همدیدی شرایط رخداد سامانه‌های همرفتی با بارش بیش از 10 میلی‌متر در جنوب غرب ایران. پژوهش­های جغرافیای ­طبیعی، 46 (2)، 137-156.
روشنی، احمد؛ پرک، فاطمه (1397). تحلیل واگرایی شار رطوبت از منابع رطوبتی اطراف ایران و اثرات آن بر توزیع فضایی نابرابر بارش در نیمة جنوبی ایران. هواشناسی و علوم جوّ، 1(1)، 25-38.
سالاروند، مسعود (1396). بررسی تأثیر تغییر اقلیم بر بارش مؤثّر و تولید گندم دیم در استان اصفهان. پایان‌نامة کارشناسی‌ارشد اقلیم‌شناسی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.
شمسی‌پور، علی‌اکبر؛ کاکی، سیف­اله؛ جعفری، ایوب؛ جاسمی، سید میثم (1397). واکاوی همدید - ترمودینامیکی بارش‌های سنگین غرب و جنوب غرب ایران (مطالعة موردی 12 تا 15 آوریل 2016). مجلّة جغرافیا و برنامه‌ریزی شهری، 22 (64)، 149-167.
طاووسی، تقی (1395). تحلیل الگوی همدید و نمایة قائم هوا در بارش­های شدید مورد: بارش­های شدید مهر 1390 جنوب شرق ایران. فصلنامة تحقیقات جغرافیایی، 31(2)، 121-129.
عباسی، فائزه؛ محمدی، حسین؛ بازگیر، سعید؛ آزادی، مجید (1397). برآورد تاریخ بهینة کشت و مراحل حسّاس رشد به تنش آبی در مناطق عمدة کشت گندم دیم ایران. مدیریت آب و آبیاری، 8 (2)، 267-287.
عباسی، فائزه (1398). رابطة تغییرات شار رطوبت و بارش مؤثّر در مناطق عمدة کشت گندم دیم ایران. رسالة دکتری دانشگاه تهران.
علیزاده، امین (1397). اصول هیدرولوژی کاربردی. مشهد: دانشگاه امام رضا (ع).
غیور، حسنعلی؛ حلبیان، امیرحسین؛ صابری، بیژن؛ حسنعلی پورجزی، فرشته (1391). بررسی رابطة بارش‌های سنگین با الگوهای گردشی جوّ بالا مطالعة موردی: استان خراسان جنوبی. مخاطرات محیط طبیعی، 1(2)، 11-27.
قربانی، محمدحسین؛ هارتونیان، هریک؛ سلطانی، افشین؛ کامکار، بهنام (1389). نقش پنجه‌ها بر عملکرد گندم در شرایط کشت دیم و خاک شور در فواصل ردیف و تراکم‌های مختلف. تولید گیاهان زراعی، 3 (4)، 125-142.
کاظمی­راد، مظفر (1377). تعیین زمان و منطقة مساعد کشت گندم دیم در آذربایجان غربی براساس توزیع دما و بارش. پایان‌نامة کارشناسی­ارشد جغرافیای طبیعی دانشگاه تربیت‌معلم.
کمالی، غلامعلی (1376). تعیین مناسب‌ترین تاریخ کاشت گندم در مناطق دیم­خیز غرب کشور با استفاده از داده‌های اقلیمی و شروع بارندگی. فصلنامة تحقیقات جغرافیایی، (45)، 13-24.
کمالی، غلامعلی؛ صدقیان­پور، علی؛ صداقت­کردار، عبدالله؛ عسگری، احمد (1387). بررسی پتانسیل اقلیمی کشت گندم دیم در استان آذربایجان شرقی. مجلّه آب‌وخاک، 22(2)، 467-483.
کیانی، مهرداد؛ لشکری، حسن؛ قائمی، هوشنگ (1398). تحلیل آماری - همدیدی رخداد شدیدترین بارش‌های غرب ایران. جغرافیا و پایداری محیط، 9(4)، 17-38.
کیانیان، محمدکیا؛ صالح پورجم، امین؛ حاجی­محمدی، حسن؛ رسولی، فهیمه (1395). بررسی و ارتباط خشکسالی و ترسالی­های غرب ایران با الگوهای سینوپتیکی جو. مجلّة آمایش جغرافیایی فضا، 6 (22)، 175-192.
محمدی، حسین (1384)، تعیین تقویم مناسب کشت گندم دیم با استفاده از شاخص شروع بارندگی. مجلّة پژوهش‌های جغرافیایی، 37 (51)، 15-31.
محمدی، حسین؛ مسعودیان، ابوالفضل (1386). ارتباط تیپ‌های همدید هوای ایستگاه سنندج با الگوهای گردشی تراز 500 هکتوپاسکال. مجلّة جغرافیا و توسعه، (9)، 39-56.
مظفری، غلامعلی (1380). ارزیابی قابلیت‌های محیطی کشت گندم دیم در استان کرمانشاه. رسالة دکتری، دانشگاه تربیت مدرّس.
مظفری، غلامعلی؛ قائمی، هوشنگ (1381). تحلیل شرایط بارش در سطح نواحی دیم­خیز مورد مطالعه: شرق کرمانشاه. پژوهش­های جغرافیایی، 34 (32)، 103-119.
موحدی، سعید؛ عساکره، حسین؛ سبزی­پور، علی‌اکبر؛ مسعودیان، سید ابوالفضل؛ مریانجی، زهره (1391). بررسی تغییرات الگوی فصلی بارندگی در استان همدان. فصلنامة تحقیقات جغرافیایی، 28 (109)، 38-48.
موسوی، سید سعید؛ کاراندیش، فاطمه؛ طبری، حسین (1395). تغییرات زمانی و مکانی بارش در ایران تحت تأثیر تغییر اقلیم تا سال ۲۱۰۰. مجلّة مهندسی آبیاری و آب ایران، 7 (25)، 152-165.
موسوی­بایگی، محمد؛ اشرف، بتول؛ رمضان­زاده هژبر، فرشته (1392). شناسایی مناطق مستعد و تعیین تاریخ کشت مناسب گندم در مناطق دیم‌کاری استان خراسان رضوی.فصلنامة پژوهش های کاربردی زراعی، (99)، 131-140.
نادی، مهدی؛ خلیلی، علی (1392). طبقه‌بندی اقلیم بارش ایران با روش تحلیل عاملی - خوشه‌ای. تحقیقات آب‌وخاک ایران، 44 (3)، 235-242.
نظری‌پور، حمید (1393). نواحی تداوم بارش ایران. فصلنامة جغرافیا و توسعه، 12(36)، 195-208.
نوحی، کیوان (1384). تحلیل بارندگی کرج به‌منظور تعیین تاریخ کاشت گندم دیم. مجلّة نیوار، 30 (58-59)، 95-103.
وزارت جهاد کشاورزی (1397). گزارش محصولات زراعی 1395-1396 معاونت برنامه‌ریزی و اقتصادی. تهران: مرکز فناوری اطّلاعات و ارتباطات.
یاراحمدی، داریوش (1380). بررسی تأثیر اقلیم بر کشاورزی دشت سیلاخور با تأکید برکشت گندم دیم. پایان‌نامة کارشناسی‌ارشد اقلیم‌شناسی، دانشگاه تهران.
یارنال، برنت (1385). اقلیم‌شناسی همدید و کاربرد آن در مطالعات محیطی. مترجم: سیّد ابوالفضل مسعودیان. اصفهان: دانشگاه اصفهان.
References
Abbasi, F., Mohammadi, H., Bazgeer, S. & Azadi, M. (2018). Estimation of the optimum cultivation date and susceptible growth satges to water stress for major areas of rain-fed wheat in Iran. Water and Irrigation Management, 8 (2), 267-287. (In Persian)
Abbasi, F. (2018). The relationship between moisture flux changes and effective rainfall in major areas of rainfed wheat cultivation in Iran. Ph.D. thesis, University of Tehran. (In Persian)
Adnan, Sh. & Hayat Khan, A. (2008) Effective rainfall for irrigated agriculture plains of Pakistan. Journal of Meteorology, 6, 61-72.
Agriculture-Jihad Ministry. (2018). Crop Production Report 2016-2017 Deputy Minister of Planning and Economy.Tehran: Information and Communication Technology Center. (In Persian)
Ahmadali, Kh., Hosseini Pajouh, N. & Liaghat, A. (2015). Determination of optimal planting date of rainfed wheat in Kurdistan Province Iran. Agronomy, 4 (109), 9-18. (In Persian)
Ahmadvand, M. R. & Najafpour, Z. (2010). Investigating the level of cultivation, production and supportive policies of wheat during the first to fourth development plans. Economic Research and Polices, 18 (53), 59-73. (In Persian)
Alizadeh, A. (2018). The principal of applied hydrology. Mashhad: Emam Reza University. (In Persian)
Bakker, M. M., Govers, G., Ewert, F., Rousevell, M. & Jones, R. (2005). Variability in regional wheat yield as a function of climate, soil and economic variable, Assessing the risk of confounding. Agriculture, ecosystems & environment, 110 (3-4), 195-209.
Bazgeer, S., Karimi, M. & Jafari, A. (2019). Relationship of Synoptic Patterns of Effective Precipitation with Planting Date and Yield of Rain-fed Wheat in Kermanshah. Physical Geography Research Quarterly, 51 (1) 1, 73-86. (In Persian)
Dinpajoh, Y. & Movaheddanesh, A. (1997). Determination of favorable areas for dryland grains production considering the monthly rainfall of East Azarbaijan, West and Ardebil. Geographical Research Quarterly, (3), 25-38. (In Persian)
Dobor, L., Barcza, Z., Hlásny, T., Árendás, T, Spitkó. T. & Fodor, N. (2016). Crop planting date matters, Estimation methods and effect on future yields. Agricultural and Forest Meteorology, 223, 103-115.
Ebrahimi, Gh. (2017). The Estemation of amount of Raining and the Computation of the need for water in the state Mazandaran and its devision based on AHP TOPSIS and Vikor methids. M.Sc. Thesis, University of Mohaghegh Ardabili. (In Persian)
Falloon, P., Bebber, D., Bryant, J., Bushell, M., Challinor, A. J., Dessai, S., Gurr, S. & Koehler, A. K. (2015). Using climate information to support crop breeding decisions and adaptation in agriculture. World Agriculture, 5 (1), 25-43.
Flower, K. C., Ward, P. R., Cordingley, N., Micin, S. F. & Craig, N. (2017). Rainfall, rotations and residue level affect no-tillage wheat yield and gross margin in a Mediterranean-type environment. Field Crops Research, 208, 1-10.
Gayoor, H. A., Halabian, A. H., Saberi B., Hossain, F. & Poorjazi, A. (2013). Investigating the Relation Between Heavy Precipitation and Circulation Patterns of the Upper Atmosphere case study, Southern Khorasan Province. Natural Environment Hazards, 1 (2), 11-27. (In Persian)
Ghorbani, M. H., Harutyunyan, H., Soltani, A. & Kamkar, B. (2011). Tillers contribution on wheat yield in rainfed and saline soil in different row spacing and plant density. Electronic Journal of Crop Production, 3 (4), 125-142. (In Persian)
Haghparast, R. (2013). Principles of rain-fed wheat cultivation (mixed with new and indigenous knowledge). Tehran: Agricultural Education and Promotion Publications. (In Persian)
Haigh, M. J. (2014). Sustainable management of head water resources: The Nairobi headwater declaration (2002) and beyond. Asian Journal of Water, Environment and Pollution, 1 (1, 2), 17-28.
Hao, Z., Zhao, H., Zhang, C., Wang, H. & Jiang, Y. (2019). Detecting Winter Wheat Irrigation Signals Using SMAP Gridded Soil Moisture Data. Remote Sensing, 11 (20), 2390. ‏
Jafari, A. (2017). Synoptic Analysis of Yield Estimation for Rain-fed wheat in Kermanshah province. M.Sc. Thesis, University of Tehran. (In Persian)
Kamali, Gh. (1997). Dtermination of thr most suitable data of plantation for wheat in dry land of the western regions of Iran with application of climatic potentials and start of rain, Geographical Researches, 12 (2), 13-24. (In Persian)
Kamali, Gh., Sadaghianpour, A., Sedaghat, A. A. A. & sghari, A. (2008). The climatic zoning of dryland wheat in Eastern Azerbaijan. Water and Soil Science, 22 (2), 467- 483. (In Persian)
Karpouzos, D. K. Kavalieratou, S. & Babajimopoulos, C. (2010). Non parametric trend analysis of rainfall data in Pieria Region basin. Ethiopia. Physics and Chemistry of the Earth, 61-62, 32-42.
Kazemirad, M. (1999). Determining the time and favorable region for rainfed wheat cultivation in West Azerbaijan based on temperature distribution and precipitation. M.Sc. Thesis, University of Tehran. (In Persian)
Khichar, M. L. & Niwas, I. (2006). Microclimatic profiles under different sowing environment in wheat. Agrometeo, 8, 201-209.
Khorshiddoust, A. M., Mofidi, A., Rasouli, A. A. & Azarm, K. (2016). A Synoptic analysis for the occurrence of springtime heavy rainfall in the Northwest of Iran. Natural environment hazards, 5 (8), 53-82. (In Persian)
Khoshal Dastjerdi, J., Nazari, A. & Ghangharmeh, A. (2015). Predicting isometropia- rainfall in dry wheat implantation and cultivation in Gonbad Kavoos province. Geographical Planning of Space Quarterly Journal, 5 (16), 165-181. (In Persian)
Kiani, M., Lashkari, H. & Ghaemi, H. (2020). Statistical - Synoptic Analysis of the Extreme Precipitation in Western Iran. Geography and Sustainability of Environment, 9 (4), 17-38. (In Persian)
Kiyaniyan, M. K., Salehpour, A., Hajimohammadi, H. & Rasouli, F. (2017). Review and relationship between Western Iranian Wet years and drought and atmospheric synoptic patterns. Geographical Planning of Space Quarterly Journal, 6 (22), 175-192. (In Persian)
Kumar, P. V., Bindi, M., Crisci, A. & Maracchi, G. (2013). Detection of variations in precipitation at different time scales of twentieth century at three locations of Italy. Weather and Climate Extremes, 2, 7-15.
Liu, Z., Hubbard, K. G., Lin, X. & Yang, X. (2013). Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in N ortheast C hina. Global Change Biology, 19 (11), 3481-3492. ‏
Marta, A. D., Orlando, F., Mancini, M., Guasconi, F., Motha, R., Qu, J. & Orlandini, S. (2015). asimplified index for an early estimation of durum wheat yield in Tuscany (Central Italy). Field Crops Research, 170, 1-6.
Mercy, I. C. (2015). Trend analysis of rainfall pattern in Enugu state, Nigeria. European Journal of Statistics and Probability, 3, 12-18.
Mohammadi, B. & Masoudian, S. A. (2007). The study on relationship of the synoptic weather types of Sanandaj station with circulation patterns of 500 hPa. Geography and Development Iranian Journal, (9), 39-56. (In Persian)
Mohammadi, H. (2005). Determining the appropriate calendar for rain-fed wheat cultivation in Ilam province using rainfall start index. Geographical Studies, 37 (51), 15- 31. (In Persian).
Mosavi Baygi, M., Ashraf, B. & Ramazanzadeh, H. F. (2013). The recognition of suitable region and determination of planting date of wheat in rain-fed region in Khorasan Razavi Province. Field Crops Research, (99),131-141 (In Persian)
Mousavi, S. S., Karandish, F. & Tabari, H. (2016). Temporal and spatial variation of rainfall in Iran under climate change until 2100, Irrigation & Water Engineering, 7 (25), 152. (In Persian)
Movahedi, S., Asakereh, H. & Maryanji, Z. (2014). Investigating the Changes of Seasonal rainfall pattern in Hamedan province. Geographical Research, 28 (2), 33-48. (In Persian)
Mozafari, Gh. & Ghaemi, H. (2002). Analysis of precipitation conditions in the rainfed rainfed areas studied, East Kermanshah. Geographical Research Quarterly, 34 (42), 103-119. (In Persian).
Mozafari, Gh. A. (2001). The assessment of environmental suitability of rain-fed wheat cultivation in Kermanshah province. PhD Thesis, Tarbiat Modares University. (In Persian)
Nadi, M. & Khalili.A(2013). Classification of Iran’s precipitation climate using factor-cluster analysis method. Irrigation Science and Engineering,44 (3),235-242. (In Persian)
Nazaripor, H. R. (2014). Iran is continuing areas. Geography and Development, 36, 208-195. (In Persian)
Noohi, K. (2006). Analysis of Rainfall in order to Determine of Sowing Date of Wheat in Karaj Region. Nivar, 30 (58-59), 95-103. (In Persian)
Omidvar, K., safarpour, F., mahmodabadi, M. & olfati, S. (2011). a synoptic analysis of cut-off low effects in the event of severe precipitations of central and southwestern regions of iran. Spatial Planning (Modares Human Sciences), 4 (68), 161-189. (In Persian)
Parvin, N. (2015) Large-scale atmospheric circulation patterns associated with the occurrence of severe storms Zab basin. Researches in Geographical Sciences, 15 (39), 33-55. (In Persian)
Rafati Alashti, S., Hejazizadeh, Z. & Karimi, M. (2014). Synoptic Analysis of the Conditions for Occurrence of Mesoscale Convective Systems. Physical Geography Research Quarterly, 46 (88), 137-156. (In Persian)
Rasouli, A. A., & sobhani, B. (2005). the role of precipitation in the determination of suitable areas and appropriate date for dryland wheat cultivation in ardebil province. Geographical Research, 3 (78), 102-117. (In Persian)
Rasouli, A. A., Ghasemi, K. & Sobhani, B. (2006). The Role of Precipitation and Elevation in Determine of the Favorable Area for Dry-Farming Wheat with Usage of GIS Study Case, Ardebil Province. Geography and Development Iranian Journal, 3 (5), 183-200. (In Persian).
Roshani, A., Parak, F. (2018). Divergence analysis of moisture flux originating from moisture sources around Iran and its effects on the unequal spatial distribution of precipitation in the southern part of Iran.‏Meteorology and Atmospheric Sciences (JMAS), 1, 25-38. (In Persian).
Sadras V., Rogeta D. & Krause K. (2003). Dynamic cropping strategies for risk management in dry-land farming systems. Agricultural Systems, 76 (3), 929-948.
Salarvand, M. (2017). Evaluation of the Influence of Climat Chang on effective rainfall and rain-fed Whea yIeld (Case study, Isfahan Province). M.Sc. Thesis, Sari. Agricultural Scienes and Natural Resources University. (In Persian)
Shamsipoor, A., Kaki, S., Jafari, A. & Jasemi, S. M. (2018). Synoptic and Thermodynamic Analysis of Heavy rainfall in the west and southwest of Iran (Case Study, 12-15 April 2016). Geography and Planning, 22 (64), 149-167. (In Persian)
Sun, H., Zhang, X., Chen, S., Pei, D. & Liu, C. (2007). Effects of harvest and sowing time on the performance of the rotation of winter wheat–summer maize in the North China Plain. Industrial Crops and Products, 25, 239-247.
Tavakkoli, A. R. & T. Oweis (2004). The role of supplemental irrigation and nitrogen in producing bread wheat in the highlands of Iran. Agricultural Water Management, 65,225-236.
Tavousi, T. (2016). Analysis of Synoptic Patterns and Vertical Profiles of Air in Heavy Rainfall in Transitional Periods: A Case Study of Heavy Rainfall Occure in South East of Iran, Oct. 2011. Geographical Researches Quarterly Journal31(2), 115-127. ‏ (In Persian)
Trammell, J. H., Jiang, X., Li, L., Kao, A., Zhang, G. J., Chang, E. K. & Yung, Y. (2016). Temporal and spatial variability of precipitation from observations and models. Climate, 29 (7), 2543-2555.
Williams, C. J., McNamara, J. P. & Chandler, D. G. (2009). Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain. Hydrology and Earth System Sciences, 13 (7), 13-25.
Wimalasuriya, R., Ha A., Tsafack E. & Larson K. (2008). Rainfall Variability and its Impact on Dryland Cropping in Victoria. In Proceeding of the 52 Annual Conference of the Australian Agricultural and Resource Economics Society, 5-8. Canberra: Australia.
Yarahmadi, D. (2001). The investigation of climatic impact on agricultural activity in Silakhor plain with emphasis on rain-fed wheat planting. M.Sc. Thesis, University of Tehran. (In Persian).
Yarnal, B. (1993). Synoptic Climatology in Environmental Analysis. Translatore: S. A. Masoudian, Isfahan: University of Isfahan. (In Persian)
Yoshioka, M., Takakura, S., Ishizawa, T. & Sakai, N. (2015). Temporal changes of soil temperature with soil water content in an embankment slope during controlled artificial rainfall experiments. Applied Geophysics, 114, 134-145.