Statistical - Synoptic Analysis of the Extreme Precipitation in Western Iran

Document Type : Research Paper

Authors

1 Department of Climatology, Faculty of Earth Sciences, University of Shahid Beheshti, Tehran, Iran

2 Meteorological Research Center, Tehran, Iran

Abstract

Heavy daily rainfall occurs when it exceeds the region's long-term average and becomes an extreme event or climate hazard. The aim of this study is to provide the synoptic and statistical analysis of the most intense daily precipitation in western Iran during a period from 1996 to 2017. To achieve this aim, Precipitation days with a maximum of 70 mm or more were specified and arranged according to the season. Finally, the most intense rainfall events of each season were selected for the analysis. Based on results, the main area of heavy rainfall is located on western slopes of Zagros, including Ilam and Marivan. In winter, the expansion of the Mediterranean system to the western Iran with accompaniment the Red Sea humidity has been recognized as an essential factor for heavy rainfall. In the spring, the formation of a Mediterranean cyclone on the Caspian Sea and the northwest of Iran has caused heavy rainfall. The most intense extreme rainfall of all times have been observed in October and autumn, due to the convergence of the Mediterranean and Sudanese systems and the establishment of a cut-off low over the eastern Mediterranean at the middle level of the atmosphere. The deployment of high-temperature air mass on the Persian Gulf and humidity advection from the southern seas and the Mediterranean have strengthened the system. The Jet stream in the atmosphere's mid-level played an important role in enhancing the convergence of winds and the low-pressure pattern of the Earth's surface. Because, the flow of warm air ascend from the Earth's surface toward the middle of the atmosphere has been out of the area rapidly. Therefore, hot and humid wind currents are absorbed more rapidly towards the low pressure center adjacent to the Earth's surface and with the release of latent heat, the air ascend to higher levels of the atmosphere.
Extended Abstract
1-Introduction
Precipitation is one of the most important climatic parameters in any geographical area. The Precipitation enhances surface and groundwater levels providing soil moisture through Influence into the soil. This climate parameter in mountainous areas such as Zagros in western Iran has wide variations.­ Diversity of topography is one of the factors leading to these changes. Altitude, aspect of slopes, differences in sun exposure, distance and proximity to water sources such as seas and latitude are the most important factors in the complexity of the relationship between topography and precipitation. There is a direct relationship between precipitation and the activity of precipitation systems in western Iran. The Mediterranean systems are transmitting cold air higher latitudes and Mediterranean Sea humidity to the Zagros Mountains. The expansion of the Mediterranean trough in the middle level of the atmosphere toward low geographical latitudes activates the humid low pressure system on Sudan and the Red Sea. The Sudanese system extends over Iran through the movement of the northward or northeastward Mediterranean trough making precipitation. The humidity of the Sudanese low-pressure system is supplied by the Red Sea, the Arabian Sea, and the northern Indian Ocean. Sometimes, the energy and humidity of these systems is so high that it causes very heavy rainfall over the Zagros Mountains in western Iran during one day.
2-Materials and Methods
In this study, daily rainfall data of 22 western synoptic stations of Iran were processed for the period 1996 to 2017. Besides, sea level pressure, atmospheric geopotential height, U-Wind, V-Wind, specific humidity and air temperature data were used for mapping and synoptic analysis. Having checked the rainfall days, maximum daily rainfall of 70 mm or more was considered as a quantitative criterion. According to this criterion, 30 cases of precipitation over 70 mm daily were identified. The most severe of these precipitation were analyzed and studied as the examples of extreme rainfall. These were the February 3, 2006 (162 mm), the April 13, 1996 (131 mm), and the October 29, 2015 (282 mm). The combinatorial maps of atmospheric parameters including sea level pressure, geopotential height, specific humidity, U-Wind and V-Wind and air temperature for levels of 850 and 500 hPa have been analyzed in order to identify the synoptic circulation patterns that cause extreme precipitation events. The composite maps displayed the arrangement of synoptic patterns on a geographical coordinates including latitudes of 10 to 50 degrees north and longitudes 20 to 70 degrees east with a spatial resolution of 2.5 to 2.5 geographical degrees.
3-Results and Discussion
In the cold season of the year whenever the Siberian high-pressure system withdraws from the western parts of Iran, conditions are provided for the establishment of a Mediterranean low-pressure system at sea level. In higher levels of the atmosphere, the Mediterranean trough advances toward Sudan and the Red Sea, resulting in the convergence of western and southern winds.  Extreme specific humidity, severe pressure decreasing, air vorticity increasing, velocity increasing of upward motions, and temperature conflict over the area are logical reasons for the formation of heavy rainfall in western Zagros slopes such as Ilam and Marivan. The air that ascends to higher levels, consumes significant amounts of latent heat to ascend the air, and condenses water vapor in a wide surface. Whatever the humidity content of the system increases, the air column consumes more energy through releasing the latent heat to ascend to higher levels. Increasing the height of the water vapor density contributes to the growth of more cumulus clouds such as cumulonimbus, and the cloud height increases from base to peak. The main cause of the extreme winter precipitation was the expansion of the Mediterranean trough over western Iran, the humidity of the Red Sea and the strong convergence of the southern and western winds. In the case of extreme spring precipitation, the role of the Mediterranean system and the humidity feeding of this system through the Caspian Sea and the Red Sea have been the cause of heavy rainfall. The main reason for heavy rainfall event on the region in autumn season has been the expansion of the Mediterranean cyclone and its integration with the Sudanese low pressure system and the warm and humidity air convection from the lower latitudes.
4-Conclusion
Based on results, the main area of heavy rainfall is located on western slopes of Zagros, including Ilam and Marivan. In winter, the expansion of the Mediterranean system to the western Iran with accompaniment the Red Sea humidity has been recognized as an essential factor for heavy rainfall. In the spring, the formation of a Mediterranean cyclone on the Caspian Sea and northwest of Iran has caused heavy rainfall. The most intense extreme rainfall of all times have been observed in October and autumn, due to the convergence of the Mediterranean and Sudanese systems and the establishment of a cut-off low over the eastern Mediterranean at the middle level of the atmosphere. The deployment of high-temperature air mass on the Persian Gulf and humidity advection from the southern seas and the Mediterranean have strengthened the system. The Jet stream in the atmosphere's mid-level played an important role in enhancing the convergence of winds and the low-pressure pattern of the Earth's surface. Because, the flow of warm air that has ascend from the Earth's surface toward the middle of the atmosphere has been out of the area rapidly. Therefore, hot and humid wind currents are absorbed more rapidly towards the low pressure center adjacent to the Earth's surface and with the release of latent heat, the air ascends to higher levels of the atmosphere.

Keywords


احمدی، محمود؛ لشکری، حسن؛ آزادی، مجید؛ کیخسروی، قاسم (1394). آشکارسازی تغییر اقلیم با استفاده از شاخص‌های حدی بارش در خراسان بزرگ. پژوهش­های دانش زمین، 6 (23)، 34-52.
اکبری, زینب؛ سیاه­منصور، مجتبی؛ نصیری، فرناز (۱۳۹۳). تحلیل الگوهای سینوپتیکی و شاخص­های ناپایداری منجر به وقوع بارش‌های نیمه­سنگین و سنگین در استان لرستان. در: مهران مقصودی. مجموعه­مقالات اوّلین همایش علوم جغرافیایی ایران، (صص. 1-12). تهران: مؤسّسة جغرافیا دانشگاه تهران.
امینی، میترا؛ لشکری، حسن؛ کرمپور، مصطفی؛ حجتی، زهرا (1392). تحلیل سینوپتیک سامانه­های همراه با بارش سنگین و سیل­زا در حوضة رودخانة کشکان برای دورة آماری (1384-1350). نشریة جغرافیا و برنامه­ریزی محیطی، 17(43)، 1-20.
بازگیر، فضل­اله؛ علی­یاری، حسین؛ شاهرخوندی، سید منصور؛ بهنام­پور، هدایت؛ ساحلی، قدرت؛ اسماعیل­زاده، حسن؛ نقدی چگنی، عبدالرضا (1394). استان­شناسی لرستان. تهران: شرکت چاپ و نشر کتاب­های درسی ایران.
براتی، غلامرضا؛ بداق جمالی، جواد؛ ملکی، ناصر (1391). نقش واچرخندها در رخداد بارش­های سنگین دهة اخیر غرب ایران. پژوهش­های جغرافیای طبیعی، 44 (80)، 88-98.
عزیزی، قاسم؛ نیری، معصومه؛ رستمی جلیلیان، شیما (1388). تحلیل سینوپتیک بارش­های سنگین در غرب کشور؛ مطالعة موردی بارش دورة 7 تا 14 مارس 2005. فصلنامة جغرافیای طبیعی، 1 (4)، 1-13.
عساکره، حسین (1391). تحلیل تغییرات مؤلّفه­های مبنای نمایه­های فرین بارش شهر زنجان. فصلنامة تحقیات جغرافیایی، 27 (105)، 1-18.
عساکره، حسین؛ سیفی­پور، زهره (1391). مدل­سازی مکانی بارش سالانة ایران. مجلّة جغرافیا و توسعه، 9 (29)، 15-30.
عساکره، حسین؛ ترکارانی، فاطمه؛ سلطانی، صغری (1391). مشخّصات زمانی - مکانی بارش­های روزانة فرین بالا در شمال غرب ایران. تحقیقات منابع آب ایران، 8 (3)، 39-53.
عسکری­زاده، سید محمد؛ مظفری، غلامعلی؛ مزیدی، احمد (1395). پیش­بینی نوسانات نمایه­های حدی بارش در شهر سبزوار با استفاده از ریزمقیاس نمایی مدل Lars-WG برای دو دورة آتی 2011-2030 و 2046-2065. فصلنامة جغرافیای طبیعی، 9 (34)، 63-82.
علایی طالقانی، محمود (1382). ژئومورفولوژی ایران. تهران: قومس.
لشکری، حسن؛ قائمی، هوشنگ؛ پرک، فاطمه (1392). تحلیل رژیم بارندگی منطقة جنوب و جنوب غرب کشور. مجلّة سپهر، 22 (85)، 57-63.
مجرد، فیروز؛ مرادی­فر، حاجیمراد (1382). مدل­سازی رابطة بارش با ارتفاع در منطقة زاگرس. نشریة مدرس، 7 (2)، 163-182.
محمدی، حسین؛ فتاحی، ابراهیم؛ شمسی­پور، علی­اکبر؛ اکبری، مهری (1391). تحلیل دینامیکی سامانه­های سودانی و رخداد بارش­های سنگین در جنوب غرب ایران. نشریة تحقیقات کاربردی علوم جغرافیایی، 12 (24)، 7-24.
محمودی، پیمان؛ علیجانی، بهلول (1392). مدل­بندی رابطة بارش­های سالانه و فصلی با عوامل زمین اقلیم در کردستان. تحقیقات کاربردی علوم جغرافیایی، 13 (31)، 93-112.
مسعودیان، ابوالفضل؛ دارند، محمد (1392). شناسایی و بررسی تغییرات نمایه­های بارش فرین ایران طی دهه­های اخیر. جغرافیا و توسعة ناحیه­ای، 11 (20)، 239-257.
منتظری، مجید (1388). تحلیل زمانی - مکانی بارش­های فرین روزانه در ایران. مجلّة جغرافیا و برنامه­ریزی محیطی، 20 (34)، 125-140.
References
Ahmadi, M., Lashkari, H., Azadi, M. & Keikhosravi, Q. (2015).Climate change detection using precipitation extreme indicators in Khorasan. Earth Sciences Researchs, 6 (23), 34-52. (In Persian)
Akbari, Z., Siah Mansour, M. & Nasiri, F. (2014). Analysis of synoptic patterns and instability indices resulted in heavy and semi-heavy rainfalls in Lorestan province. In: Mehran Maghsoudi. Journals set of the First Conference of Iranian Geographical Sciences, Tehran: Institute of Geography. University of Tehran, 1-12. (In Persian)
Alaee Taleqani, M. (2003).Geography of Iran. Tehran: Pubication of Qomes. (In Persian)
Amini, M., Lashkari, H., Karmpour, M. & Hojati, Z. (2013). Synoptic analysis of systems associated with heavy rainfall and flooding in the Kashkan River Basin for the statistical period (2005-2006). Journal of Geography and Environmental Planning, 17 (43), 1-20. (In Persian)
Asakereh, H. (2012). Analysis of Changes in Basic Components of Rainfall extreme indexes of Zanjan. Journal of Geographical Research, 27 (105), 1-18. (In Persian)
Asakereh, H. & Seifipour, Z. (2012). Spatial modeling of annual rainfall in Iran. Journal of Geography and Development, 9 (29), 15-30. (In Persian)
Asakereh, H., Tarkarani, F. & Soltani, S. (2013). Tempo-Spatial Characters of Extreme Daily Precipitation of Northwest of Iran. Iran-Water Resources Research, 8 (3), 39-53. (In Persian)
Askari Zadeh, S., Mozaffari, Q. & Mazidi, A. (2016). Oscillations Forecasting of Rainfall extreme Indexes in Sabzevar City Using Lars-WG Micro-Exponential Model for Two Future Periods 2011-2030 and 2046-2046. Natural Geography, 9 (34), 63-82. (In Persian)
Azizi, Q., Nayeri, M. & Rostami, J. Sh. (2009). Synoptic analysis of heavy rainfall in the west of the country; a case study of the period March 7-14, 2005. Journal of Natural Geography, 1 (4), 1-13. (In Persian)
 Barati, Q., Bodaq Jamali, J. & Maleki, N. (2012). The Role of Anticyclones in the Occurrence of Heavy Rainfalls in the Recent decades of the Western Iran. Journal of Natural Geography Research, 44 (80), 88-98. (In Persian)
Barcikowska, M. J., Weaver, S. J., Feser, F., Russo, S., Schenk, F.­ & Stone, D. A. (2018). Euro-Atlanitic winter storminess and precipitation extremes under 1.5ºC vs. 2ºC warming scenarios. Journal of Earth System Dynamics, (9), 679-699.
Bazgir, F., Ali Yari, H., Shahrokhandi, S., Behnampour, H., Saheli, Q., Ismaeelzadeh, H., & Naqdi Chegeni, A. (2015). Lorestan Statology. Tehran: Iran textbook Publishing Company. (In Persian)
Cortes, M., Turco, M., Botija, M. L. & Llast, M. C. (2018).The relationship between precipitation and insurance data for floods in a Mediterranean region (northeast Spain). Natural Hazards and Earth System Sciences, (18), 857-868.
Das, S., Zhu, D. & Chi-Han, C. (2018). An assessment temporal effect on extreme rainfall estimates. PIHAS Journal, (379), 145-150.
Feng, P., wang, B., Liu, D. L., Xing, H., Ji, F., Macdam, I., Ruan, H. & Yu, Q. (2018). Impact of rainfall extremes on wheat yield in semi - arid cropping systems in eastern Australia. Journal of Climatic Change, (147), 555-569.
Hellstrom, C. (2005). Atmospheric conditions during extreme and non-extreme precipitation events in Sweden. International Journal Climatology, (25), 631-648.
Krishnamurthy, C. K. B., Lall, U. & Kwon, H. H. (2009). Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. Journal of Climate, (22), 4737-4746.
Lashkari, H., Ghaemi, H., & Parak, F. (2013). Analysis of the rainfall regime in the south and southwest of the country. Sepehr Magazine. 22 (85), 57-63. (In Persian)
Li, Y., Cai, W. & Campbell, E. P. (2005).Statistical modeling of extreme rainfall in southwest western Australia. Journal of Climate, 18, 852-863.
Libertino, A., Ganora, B. & Claps, P. (2018).technical note: space-time analysis of rainfall extremes in Italy : clues from reconciled dataset. Hydrology and Earth System Sciences, 22, 2705-2715.
Mahmoudi, P. & Alijani, B. (2013). Modeling the Relationship between Seasonal and annual Precipitation with Geo-Climate Factors in Kurdistan. Journal of Geosciences Applied Research, 13 (31), 93-112. (In Persian)
Masoudian, A. & Darand, M. (2013).­Identifying and investigating changes of Iran's extremes rainfall indexes in recent decades. Journal of Geography and Regional Development, 11 (20), 239-257. (In Persian)
Mekis, E. & Hogg, W. D. (1999). Rehabilitation and analysis of Canadian daily precipitation time Series. Journal of Atmos.–Ocean, 37, 53-85.
Mizrahi, F. (2000). Heavy daily Precipitation distribution in east–central France and west European meteorological patterns. Journal of Theoretical Application Climatology, (66), 199-210.
Mohammadi, H., Fattahi, E., Shamsipour. A. & Akbari, M. (2012).­Dynamic analysis of Sudanese systems and the occurrence of heavy rainfall in southwestern Iran. Journal of Geosciences Applied Research, 12 (24), 7-24. (In Persian)
Mojarrad, F. & Moradifar, H. (2003). Modeling the relationship of precipitation and elevation in the Zagros region. Publication of Modares, 7 (2), 163-182. (In Persian)
Montazeri, M. (2009) Tempo-spatial analysis of extreme 24 hour precipitations in Iran, Journal of Geography and Environment Planning, 34 (20), 125-140. (In Persian)
Papalexiou, S. M. & Montanari, A. (2017). global and regional increase of precipitation extremes under global warming .Water Resources Research, 1-35.
Putkonen, J. K. (2004).Continuous Snow and Rain Data at 500 to 4400 m Altitude near Annapurna, Nepal,1992-2001.Arctic,Antractic and Alpine Research, 36 (2), 244-248.
Sim, I., Lee, O. & Kim, S. (2019). Sensitivity analysis of extreme daily rainfall depth in summer season on surface air temperature and dew-point temperature. Journal of Water, 11 (771), 1-21.
Wang, B., Ding-Qing, H. & Jhun, T. (2006). Trends in Seoul 1778-2004 summer precipitation. Geophysical Research Letters, 33, 1-5.