Morphotectonic Analysis of Sabalan Caldera and its Impact on Related River Basins and Alluvial Fans in the Northern Slopes

Document Type : Research Paper

Authors

Department of Physical Geography, Faculty of Literature and Humanities, University of Mohagheghe Ardabili, Ardabil, Iran

Abstract

One of the most interesting landforms in the Sabalan massif landscape is the 12 Kilometers caldera-shaped circular fault. The fault has affected landforms, including catchments and associated alluvial fans. The purpose of this study was to analyze the role of Sabalan Caldera in the evolution of river basins and associated alluvial fans in the northern slopes. Morphotectonic indices including Stream Gradient Index (SL), Mountain-Front Sinuosity (SMF), Valley-Floor Width to Height Ratio (VF) and Transverse Topographic Symmetry Factor (T) were used in the present study. Besides, Topographic maps 1:25000, Geological maps 1:100000, Digital Elevation Model (Dem) with resolution of 20 meters, Landsat satellite image with resolution of 30 meters, Geographic Information System (GIS), Excel, Arch Hydro10 and Envi 4.8 as research tools, have been used to provide the quantitative and qualitative analyses of morphotectonic indices. Moreover, field observations and geomorphologic evidence have been used to verify greater confidence in the results. The findings from the calculation of morphotectonic indices and field observations, also geomorphologic evidence showed that the caldera range are still tectonically active. Moreover, the drainage network map obtained from the digital elevation model, revealed that the caldera collapse has changed the pattern of the drainage networks from the radial to the central state and then to the dendritic state. Likewise, this process has increased not only the area of the catchments but also the power flow of the rivers. As a result, the rivers using a loose formation of Lahar have incised fan systems and left behind the abandoned terraces and old fans.
Extended Abstract
1-Introduction
 The unrelenting competition among tectonic processes building topography and surface processes that tend to tear them down represents the core of tectonic geomorphology. Fan systems are usually formed where high mountains lie next to the low land. These landforms are considered as sensitive recorders of the processes that shape them. Calderas are depressions in volcanic areas or over volcanic centers. They are the productions of vast explosions or tectonic sinking, sometimes after an eruption. One of the most interesting landforms in the Sabalan massif landscape is the 12 Kilometers caldera-shaped circular fault. The fault has affected landforms, including catchments and associated alluvial fans. The purpose of this study was to analyze the role of Sabalan Caldera in the evolution of river basins and associated alluvial fans in the northern slopes.
2- Materials and Methods
 Morphotectonic indices including Stream Gradient Index (SL), Mountain-Front Sinuosity (SMF), Valley-Floor Width to Height Ratio (VF) and Transverse Topographic Symmetry Factor (T) were used in the present study. Besides, Topographic maps 1:25000, Geological maps 1:100000, Digital Elevation Model (Dem) with resolution of 20 meters, Landsat satellite image with resolution of 30 meters, Geographic Information System (GIS), Excel, Arch Hydro10 and Envi 4.8 as research tools, have been used to provide the quantitative and qualitative analyses of morphotectonic indices.  In addition, field observations and geomorphologic pieces of evidence have been applied to verify and greater confidence of the results.
 3- Results and Discussion
 The purpose of this study was to analyze the morphotectonics of Sabalan caldera using morphotectonic indices and field studies and its effect on the evolution and evolution of conifers and catchments in the northern slopes of Sabalan massif.
Mountain-Front Sinuosity (Smf): On active mountain fronts, uplifts overcome erosional processes and produce linear, low-Sinuosity mountain fronts, whereas, on passive mountain fronts, erosional processes overcome uplifts and produce high- Sinuosity mountain fronts. The variations of this index range from one to 1.5, 1.5 to 3 and 3 to 10, indicating very high, semi-active and inactive tectonic activity, respectively. The results of calculating the mountain front sinusoidal index showed that in many parts of the Caldera range, this value is low indicating high tectonic activity.
Stream Gradient Index (Sl): One of the most important indicators of the river is that it can perform better in active tectonic detection because rivers are sensitive to tectonic activity and respond rapidly to it. The results showed that the value of Sl index in the caldera range is more than 500. Irregularities in river networks, if not for lithological and climatic reasons, are related to recent tectonic activity. According to the studies on lithology and climate of the region, it was found that all catchments have the same environmental conditions. Therefore, the difference in the value of the index is related to active tectonics.
Valley-Floor Width to Height Ratio (VF): According to studies, there was a significant difference with 99% confidence in the ratio of index (VF) between active and passive tectonic zones. The range of the index changes is 1< VF, 2 > VF<1, and Vf > 2, respectively, indicating very active, semi-active and inactive tectonics, respectively. The results of this index showed that Khyav and Karkari basins with VF, 0.81 and 0.74 have high tectonic activity. The onar and Shirvan Valley watersheds have semi-active tectonic activity with VF, 1.35 and 2, respectively.
Transverse Topographic Symmetry Factor (T): The value of this index in the symmetric basins is equal to zero which approaches 1 as the asymmetry increases. The value of this indicator is close to 1 in all basins, indicating the probability of tectonic activity, although it cannot individually confirm that. However, according to other indices which indicate tectonic activities, the basin can be tectonically recognized as an active one.
Morphology of alluvial fans of the region: Field studies of the alluvial fans surfaces of the region show that the apex of all alluvial fans in the region has been severely incised by drainage networks. The reason for incising the apex of the alluvial fans is attributed to the tectonic activity of the Sabalan Mountain Caldera. According to the study, it was found that if the tectonic movements occur at the apex of alluvial fans, incised apex of the alluvial fans take place and embayment of front Mountain happens, although if the uplift of mountains takes place in the source area and away from the apex, they will be formed near the front of the mountain without entrenchment.
4- Conclusions
 The Caldera fault has created two mountain fronts in the Sabalan landscape. One is a tectonically active inland mountain front that has its signs and symptoms, including numerous cliffs, Waterfall, and another is a tectonically inactive mountainous front that is inactive having its signs and symptoms, including incised the apex of the alluvial fans and embayment of the mountain front. Moreover, the results of the calculation of Stream Gradient Index (SL), Mountain-Front Sinuosity (SMF), Valley-Floor Width to Height Ratio (VF) and Transverse Topographic Symmetry Factor (T), confirm the results.

Keywords


بهرامی، شهرام؛ مقصودی، مهران؛ بهرامی، کاظم (1391). ارزیابی نقش تکتونیک در میزان برش رأس مخروط‌افکنه‌های واقع در حاشیة طاقدیس دانه خشک. جغرافیا و توسعه، 10(28)، 23-40.
بیاتی خطیبی، مریم (1388). تشخیص فعّالیّت‌های نئوتکتونیکی در حوضة آبریز قرنقوچای با استفاده از شاخص‌های ژئومورفیک و مورفوتکتونیک. فضای جغرافیایی، 9 (25)، 23-50.
تقیان، علیرضا (1394). بررسی نقش تکتونیک در مورفولوژی، تقطیع و تحوّل مخروط‌افکنه موغار (شمال اردستان). فصلنامة تحقیقات جغرافیایی، 30 (1)، 119-134.
خیام، مقصود (1372). کوششی بر طرح وضع ساختمانی و مورفولوژی آتش­فشانی فلات آذربایجان با تأکید بر تودة ولکانیکی سبلان.نشریة دانشکدة ادبیات و علوم انسانی،33(146-147)، 32-50.
خیام، مقصود؛ مختاری، داود (1382). ارزیابی عملکرد فعّالیّت‌های تکتونیکی براساس مورفولوژی مخروط‌افکنه‌ها (مخروط‌افکنه‌های دامنة شمالی میشو داغ). پژوهش‌های جغرافیایی، 3 (44)، 1-10.
دلال‌اوغلی، علی (1381). پژوهش در سیستم‌های مورفوژنز مؤثّر در دامنة شمالی سبلان و شکل‌گیری دشت انباشتی مشگین‌شهر. رسالة دکتری ژئومورفولوژی، دانشگاه تبریز.
رامشت، محمد‌حسین؛ شاه­زیدی، سمیه سادات؛ سیف، عبدا...؛ انتظاری، مژگان (1388). تأثیر تکتونیک جنبا بر مورفولوژی مخروط‌افکنة درختنگان در منطقة شهداد کرمان. جغرافیا و توسعه، 7 (16)، 29-46.
رجبی، معصومه؛ هاشمیان، میرابراهیم (1396). ارزیابی فعّالیّت‌های زمین­ساختی حوضه‌های آبریز دامنة جنوب غرب ارتفاعات سبلان با استفاده از اختصاصات ژئومورفولوژیک. فصلنامة تحقیقات جغرافیایی، 32 (1)، 76-93.
سحابی، فریدون (1378). بررسی آتش‌فشان سبلان با توجّه خاص بر روند تشکیل منابع زمین گرمایی مشگین‌شهر. استان اردبیل. علوم زمین، 8 (31-32)، 1-15.
شیران، مهناز؛ زنگنه اسدی، محمدعلی؛ ادب، حامد؛ امیراحمدی، ابوالقاسم (1397). تحلیلی بر آنومالی‌های مورفوتکتونیک و ارتباط آن با تغییر ساختارهای تکتونیکی پهنة زاگرس مرتفع و کمربند سنندج - سیرجان در منطقة نمونة قلعه شاهرخ. جغرافیا و توسعه، 16 (52)، 43-68.
کمالی، زهرا؛ هیهات، محمودرضا؛ نظری، حمید؛ خطیب، محمد‌مهدی (1397). بررسی گسل دورود (جنوب باختر ایران) برپایة مطالعات ریخت­زمین‌شناختی و ژئومورفولوژیک مخروط‌افکنه‌ها. جغرافیا و توسعه، 16 (53)، 51-68.  
گرزی زنجانی، سعید؛ موسوی، زهرا؛ رضاییان، مهناز (1397). مطالعة تغییرات سطحی آتش‌فشان سبلان با استفاده از تکنیک تداخل­سنجی راداری. مجموعه­مقالات هجدهمین کنفرانس ژئوفیزیک ایران، (صص.1008-1011). تهران: مؤسّسة بین­المللی زلزله‌شناسی و مهندسی زلزله.
مختاری، داود؛ رضایی­مقدم، محمدحسین؛ محمودی، شبنم؛ مرادی، عباس (1397). کاربرد شاخص‌های مورفومتری تکتونیکی جنبا در برآورد وضعیّت تکتونیکی گسل‌های مکران در محدودة حوضه‌های آبریز تبرکن و گز. جغرافیای طبیعی، 11 (39)، 1-17.
مددی، عقیل؛ رضایی­مقدم، محمدحسین؛ رجایی، عبدالحمید (1383). تحلیل فعّالیّت‌های نئوتکتونیک با استفاده از روش‌های ژئومرفولوژی در دامنة شمال غربی تالش (باغروداغ). پژوهش‌های جغرافیایی، 36 (48)، 123-138.
مقصودی، مهران؛ عمادالدین، سمیه (1390). تحلیل شواهد مورفوتکتونیکی گسل درونه در محدودة حوضة آبریز شش‌طراز و مخروط‌افکنه‌های پایین‌دست آن. جغرافیا و توسعة‌ ناحیه‌ای، 9 (16)، 107-123.
مقصودی، مهران؛ ابراهیم‌خانی، نرگس؛ یمانی، مقصود (1391). تأثیر نئوتکتونیک بر مخروط‌افکنة رود حاجی­عرب (دشت قزوین) با بررسی داده‌های مورفومتری و رسوب‌شناسی. انجمن جغرافیای ایران، 10 (33)، 87-107.
همتی، فریبا؛ مختاری، داود؛ روستایی، شهرام؛ زمان چمنی، بهزاد (1396). ارزیابی فعّالیّت‌های نئوتکتونیکی محدودة گسل بناروان براساس شاخصه‌های ریخت­سنجی. جغرافیا و مخاطرات محیطی، 6 (23)، 85-107.
References
Azañón, J. M., Pérez-Peña, J. V., Giaconia, F., Booth-Rea, G., Martínez-Martínez, J. M. & Rodríguez-Peces, M. J. (2012). Active tectonics in the central and eastern Betic Cordillera through morphotectonic analysis: the case of Sierra Nevada and Sierra Alhamilla. Journal of Iberian Geology, 38 (1), 225-238. https://doi.org/10.5209/rev_ JIGE.2012.v38.n1.39214.
Bahrami, S., Maghsoudi, M. & Bahrami, K. (2012). Evaluation of the role of tectonics on the incision rate of alluvial fans located in the Danekhosh anticline margins. Geography and Development, 10 (2), 23-40. https://doi.org/10.22111/GDIJ.2012.319. (In Persian)
Bayati Khatibi, M. (2009). Detection of neotectonic activity in the Gharanghochai catchment using geomorphic and morphotectonic indices. Geographical Space, 9 (25), 23-50. (In Persian)
Blair, T. C. & McPherson, J. G. (2009). Processes and forms of alluvial fans. In Geomorphology of desert environments. In: A.J. parsons, A. D. Abrahams. Geomorphology of Desert Environment, (pp. 413-467). Dordrecht: Springer. Doi 10.1007/978-1-4020-5719-9-14.
Browning, J. & Gudmundsson, A. (2015). Caldera faults capture and deflect inclined sheets: an alternative mechanism of ring dike formation. Bulletin of Volcanology, 77 (1), 1-33.
Bull, W. B. & McFadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock Fault, California. In: Doehring, D. O. Geomorphology inArid Regions, (pp. 115-138). New York: Binghamton.
Bull, W. B. (2007). Tectonic geomorphology of Mountains: A New Approach to Pale Seismology. Oxford: Wiley-Blackwell.
Bull, W. B. (2009). Tectonically Active Landscapes. Oxford: Wiley-Blackwell.
Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C. Zhang, X. & Chen, L. (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large‐scale drainage patterns. Tectonics, 23 (1), 1-20. https://doi.org/10.1029/2002TC001402.
Dallal oghli, A. (2003). The study of the effective morphogenesis systems in the northern slope of Sabalan Mountain and the formation of the accumulative Plain of meshkinshahr. Doctoral dissertation, Tabriz University. (In Persian)
Didon, J. & Gemain, Y. M. (1976). Le Sabalan, volcan plio-quaternaire de l'Azerbaidjan oriental (Iran). Doctoral dissertation, Universite Scientifique et Médicale de Grenoble.
Eleni, K., Hariklia, S., George, B., Antonarakou, A. & Evangelos, K. (2015). Morphotectonicanalysis, structural evolution/pattern of acontractional ridge: giouchtas Mt., Central Crete, Greece. Journal of Earth System Science, 124 (3), PP. 587-602.
Figueroa, A. M. & Knott, J. R. (2010). Tectonic geomorphology of the Southern Sierra Nevada Mountains (California): Evidence for Uplift and Basin Formation. Geomorphology, 123 (1-2), 34-45. https://doi.org/10.1016/j.geomorph.2010.06.009.
Gorzi Zanjani, S., Mousavi, Z. & Rezaian, M. (2019). Study of Surface Variations of Sabalan Volcano Using Radar Interferometry Technique. Proceedings of the 18th Iranian Geophysical Conference, (pp. 1011-1008). Tehran: International Institute of Seismology and Earthquake Engineering. (In Persian)
Hack, J. T. (1973). Stream-profile analysis and stream-gradient index. UNITED STATES DEPARTMENT OF THE INTERIOR: Journal of Research of the us Geological Survey, 1 (4), 421-429.
Hemmati, F., Mokhtari, D., rostai, S. & Zaman chamani, B. (2018). Evaluation of neotectonic activities of the Benarwan fault zone based on morphometric indices. Geography and Environmental Hazards, 6 (23), 85-107. DOI: 10.22067/geo.v6i2.59240. (In Persian)
Huggett, R. (2005). Fundamentals of Geomorphology. London and New York: Routledge.
Jaan, O., Lone, S., Malik, R., Lone, A., Wasim, M. & Un-Nissa, A. (2015). Morphotectonic and morphometric analysis of Vishav basin left bank tributary of jhelum river sw Kashmir Valley India. International Journal of Economic and Environmental Geology, 6 (2), 17-26.
Jayappa, K. S., Markose, V. J. & Nagaraju, M. (2012). Identification of geomorphic signature of neotectonic activity using dem in the precambrian terrain of western Ghats, India.Remote Sensing and Spatial Information Sciences, 1 (8), 215-220. DOI: 10.5194/ isprsarchives-XXXIX-B8-215-2012.
Kamali, Z., Hayat, M. R., Nazari, H. & Khatib, M. M. (2019). Investigation of Doroud Fault (southwestern Iran) based on geological and geomorphological studies of alluvial fans. Geography and Development, 16 (53), 51-68. https://doi.org/10.22111/GDIJ.2018.4150. (In Persian)
Keller, E. A. & Pinter, N. (1996). Active tectonics. Upper Saddle River, NJ: Prentice Hall.
Khayyam, M. & Mokhtari, D. (2003). Evaluation of tectonic activities based on morphology of alluvial fans (Misho north slope alluvial fans). Geographical Research, 3 (44), 1-10. (In Persian)
Khayyam, M. (1996). An attempt on the structure situation and volcanic morphology of the Azerbaijani plateau with emphasis on Sabalan volcanic mass. Journal of the Faculty of Literatures & Humanities, 33 (147-146), 32-50. (In Persian)
Lipman, P. W., Zimmerer, M. J. & McIntosh, W. C. (2015). An ignimbrite caldera from the bottom up: Exhumed floor and fill of the resurgent Bonanza caldera, Southern Rocky Mountain volcanic field, Colorado. Geosphere, 11 (6), 1902-1947.
Lone, A. (2017). Morphometric and Morphotectonic Analysis of Ferozpur Drainage Basin Left Bank Tributary of River Jhelum of Kashmir Valley, NW Himalayas, India. Geography & Natural Disasters, 7 (208). DOI: 10.4172/2167-0587.1000208.
Lü, Y. & Chen, L. (2017). Upper crustal P-wave velocity structure beneath two volcanic areas in northern Iran. Science China Earth Sciences, 60 (4), 786-795.
Madadi, A., Rezaei Moghaddam, M. H. & Rajaii, A. (2004). Neotectonic activity analysis using geomorphological methods in northwest Talesh (Baghrodagh) slopes. Geographical Research, 36 (48), 123-138. (In Persian)
Maghsoudi, M., & Emadaddin, S. (2011). Morphotectonic evidence analysis of the Daroneh Fault in the Shushtaraz catchment area and its downstream alluvial fans. Geography and Regional Development, 9 (16), 107-123. https://doi.org/10.22067/geography.v9i16.11031. (In Persian)
Maghsoudi, M., Ebrahimkhani, N. & Yamani, M. (2012). Neotectonic impact on the alluvial fan of the Haji Arab River (Qazvin plain) by investigating morphometric and sedimentological data. Journal of the Iranian Geographical Society, 10 (33), 87-107. (In Persian)
Mandi, S. & Soren, K. (2016). Morphotectonic analysis of the Chel river basin, northern west Bengal, India. Journal of Humanities and Social Science, 21 (6), 1-6.
Mokhtari, D., Rezaei Moghaddam, M. H., Mahmoudi, S. & Moradi, A. (2019). Application of Tectonic Morphometric Indices in Estimation of Tectonic Status of Makran Fault in Tabrken and Gaz Basins. Journal of Natural Geography, 11 (39), 1-17. (In Persian)
Mousavi, Z., Darvishzadeh, A., Ghalamghash, J. & Vosooughi, M. (2011). Discussion on Stratigraphy Questions at Sabalan Volcano and Sabalan Geothermal Exploration Project, Meshkinshahr, Iran.GRC Transactions, 35 (2011), 931-934.
Pérez-Peña, J. V., Azor, A., Azañón, J. M. & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (betic cordillera, se Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119 (1-2), 74-87. https://doi. Org/10.1016/j. gemorph. 2010.2.020.
Rajabi, M. & Hashemian, M. A. (2018). Evaluation of tectonic activities of southwestern Sabalan catchments using geomorphological features. Geographical Research, 32 (1), 93-76. (In Persian)
Ramírez‐Herrera, M. T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. The Journal of the British Geomorphological Group, 23 (4), 317-332. https://doi.org/10.1002/(SICI)1096-9837(199804)23:4 3.0.CO;2-V.
Ramshat, M. H., Shah Zaidi, S. S., Seif, A. & Entezari, M. (2009). Influence of tectonic activity on morphology of Derakhtankhan alluvial fans in the Shahdad Kerman. Geography and Development, 7 (16), 46-29.https://doi.org/10.22111/GDIJ.2009.1174. (In Persian)
Sahabi, F. (1999). Sabalan volcanic complex with special reference to the hydrotermal sources in Meshkinshahr area, NW Iran, Geosciences. Geological survey of Iran, 8 (31-32), 1-14. (In Persian)
Shiran, M., Zanganeh Asadi. M. A., Adab, H. & Amir Ahmadi, A. (2019). An analysis of morphotectonic anomalies and their relationship with the alteration of high Zagros broad tectonic structures and Sanandaj-Sirjan Belt in the Shahrokh castle sample area. Geography & Development, 16 (52), 43-68. https://doi.org/10.22111/GDIJ.2018.4109. (In Persian)
Taghian, A. (2015). Investigation of the role of tectonics in morphology, segmentation and evolution of Moghar alluvial fan (North Ardestan). Geographical Researches, 30 (1), 119-134. (In Persian)
Topal, S. & Özkul, M. (2018). Determination of relative tectonic activity of the Honaz fault (SW Turkey) using geomorphic indices. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24 (6), 1200-1208.