The Effect of Landscape Pattern on Urban Temperature Changes in Hamadan

Document Type : Research Paper

Authors

1 Department of Environmental Sciences, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran.

2 Department of Rangelands and Watershed Management, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran.

Abstract

Urbanization and urbanized areas have a significant impact on local and global climate. One of the most important its effects is surface urban thermal variations (SUTV), including surface urban heat islands (SUHI) and surface urban heat sinks (SUHS). The purpose of this study is to investigate the impacts of landscape pattern changes and the efficiency of landscape metrics in analyzing surface urban thermal variations in Hamadan using Landsat 8 satellite images. Having calculated land surface temperature (LST), the SUHI and SUHS regions were identified, the existing land uses in these areas were classified and finally landscape metrics at class and landscape levels were extracted using FRAGSTATS software. The results showed that the highest temperature in the study area was seen in the areas with no vegetation cover, in other words the main component of SUHS is agriculture patch, while soil patch is the main constituent of SUHI. The relationships between LST and landscape metrics were also examined. LST and patch density (PD) were negatively correlated. In SUHS, in contrast to island heat areas, LST had a negative correlation with AI metrics and had a positive and significant relationship with PD metrics. The higher the consistency between land use and landscape patterns, the lower the temperature and the higher the fragmentation, the higher the temperature effect. The results indicated that land surface temperature in Hamadan is not affected just by land use composition and land cover, LST in Hamadan is not only affected by the combination of land cover, but also the spatial configuration and structure of the landscape is influenced.
Extended Abstract
1-Introduction
 Urbanization and urban areas have a significant impact on local and global climate. One of the most significant impacts is the urban surface heat changes, which include Surface Urban Heat Islands and Surface Urban Heat Sinks. Analyzing heat islands and heat sinks, and understanding the relationship between them and urban landscape patterns can provide valuable information for designing effective mechanisms to reduce heat islands in the urban scale.
In order to analyze the landscape pattern, in addition to the shape, size and type of patches, the proximity of the patches and the distribution of the landscape patterns should also be examined. Therefore, understanding the spatial distribution of landscape structure in complex patchwork mosaics has become one of the major issues in landscape pattern studies. The metrics are used as quantitative indicators for measuring and describing landscape patterns.
2-Materials and Methods
 For land surface temperature analysis, the advantage of satellite temperature data is advantageous due to the limited number of synoptic stations in the city and the high cost of collecting terrestrial data. It is possible to identify urban microclimate details with the help of satellite images obtained from surface heating patterns. The purpose of this study is to investigate the effect of changes in urban landscape patterns on urban surface temperature in Hamadan county using Landsat 8 satellite images.
The Hamadan County is located in the middle part of Hamadan province with an area of ​​2831 km2. It is naturally located in a mountainous area and has a variable climate. In this study, the Landscape of Hamadan was divided into eight categories: water, impermeable surfaces, soil, agriculture, rangeland, dry farms, saline soils and other. The points were sorted visually.
The Landsat 8 image thermal band and ENVI software were used to calculate the surface temperature. To identify the urban temperature changes, the definition of the urban heat islands proposed by Hu and Brunsell (2013) was applied to identify the heat islands and heat sinks based on the surface temperature changes throughout the study area.
To analyze the variation of landscape patterns within the area, surface temperature variations were calculated based on the classification results, a set of landscape metrics (including composition and configuration) within the heat islands and heat sinks. Six classes and three landscapes were considered based on landscapes measurements using FRAGSTATS software.
Percentage of landscape, Largest Patch Index, Patch density, Aggregation Index, Fractal dimension index and Mean Nearest-Neighbor were the considered Landscape metrics at the class level; and the percentage of land cover, the largest patch index and the aggregation index were considered at the landscape level. The Class level metrics were calculated without sampling.
Spearman correlation was used to examine the relationship between land surface temperature and surface spatial metrics in heat islands and sinks in the study area.
3-Results and Discussion
 In the whole study area, mean surface temperature was 39.71 ° C, standard deviation 4.4, minimum temperature was 19.56 and maximum was 50.87 ° C. The first category of temperature represents the coolest zones, or heat sinks, and includes mountainous areas and agricultural lands with dense vegetation. The second category covers most of the central part of the county with thin vegetation, and the third one, or thermal islands, is most prone to agricultural lands and has much lower vegetation coverage, or they are without vegetation.
The maximum land surface temperature is in the bare land and the surface temperature is drastically lower in the relatively dense vegetation. In the heat islands, there was a negative correlation between land surface temperature and patch density with a correlation coefficient of (-0.395); and a positive correlation with aggregation index and largest patch index with correlation coefficient of 0.221, 0.226
In the heat sinks, in contrast to the heat islands, the aggregation index and the largest patch index had a negative correlation with the patch density index.
At the class-level, the bare soil occupies a large proportion of the urban thermal islands, and the lowest percentage is for the agricultural class. While within the heat sinks of the city, the agricultural lands accounted for the largest percentage. This indicates that the composition of the landscape has a major influence on the surface temperature.
At the landscape level, where the whole area was considered to be a unified landscape, there was a significant negative correlation between the aggregation index and the largest patch index with surface temperature in the urban heat sinks.
4-Conclusion
 While dense urban zones were expected to have maximum temperatures, in this study the impermeable surfaces did not have high temperatures. Rather, the vegetation had the main role so that areas with high cover density had low surface temperature, and the areas with low vegetation cover and bare soils showed high surface temperatures. Therefore the vegetation was the most effective factor in the surface temperature changes in the study area.
The results relatively revealed that by modifying the composition and configuration of the landscape at the class and landscape levels, the effects of urban heat islands could be mitigated or the effects of urban heat sinks increased.

Keywords


بی­همتای طوسی، ندا؛ سفیانیان، علیرضا؛ فاخران، سیما (1392). بررسی تغییرات پوشش اراضی در منطقة مرکزی اصفهان با استفاده از متریک­های سیمای سرزمین. بوم­شناسی کاربردی، 2 (6)، 77-87.
تیموری، حسن؛ مرادی، عباس؛ تیموری، حسین (۱۳۹۳). استفاده از سنجه­های سیمای سرزمین و سنجش­ازدور در ارزیابی روند تغییرات توسعة شهری به­منظور برنامه­ریزی برای دستیابی به توسعة پایدار. اوّلین کنفرانس ملّی شهرسازی، مدیریت شهری و توسعة پایدار، تهران: مؤسّسة ایرانیان، انجمن معماری ایران.
حاجیلو، مرضیه؛ المدرسی، سید علی؛ زرنگ، نسیم؛ سرکارگراردکانی، علی (۱۳۹۳).پایش دمای سطح زمین و بررسی رابطة کاربری اراضی با دمای سطح با استفاده از تصویر سنجنده ETM+ و OLI (مطالعة موردی: استان قم). همایش ملّی کاربرد مدل­های پیشرفتة تحلیل فضایی سنجش­ازدور و GIS در آمایش سرزمین، یزد، دانشگاه آزاد اسلامی واحد یزد، شهرداری یزد.
دشتکیان، کاظم؛ دهقانی تفتی، محمدعلی (1386). بررسی دمای سطح زمین در ارتباط با پوشش گیاهی و توسعة شهری با استفاده از سنجش­ازدور و سامانة اطّلاعات جغرافیایی در مناطق بیابانی، مطالعة موردی: منطقة یزد‌اشکذر. نشریة پژوهش و سازندگی، 20 (4)، 169-179.
رمضانی، بهمن؛ دخت محمد، مریم (1389). شناخت محدودة مکانی تشکیل جزیرة گرمایی در شهر رشت. پژوهش و برنامه­ریزی شهری، 1 (1)، 49-64.
زبردست، لعبت؛ یاوری، احمد رضا؛ صالحی، اسماعیل؛ مخدوم، مجید (1390). بررسی تغییرات ساختاری ناشی از جادّه در پارک ملی گلستان در فاصله سال­های 1366 تا 1389 با استفاده از متریک­های اکولوژی سیمای سرزمین. پژوهش­های محیط­زیست، 2 (4)، 11-20.
سفیانیان، علیرضا؛ مختاری، زهرا؛ خوجه­الدین، سید جمال؛ ضیایی، حمیدرضا (1392). تحلیل گرادیان الگوی سیمای سرزمین شهری مطالعه موردی: شهر اصفهان. پژوهش جغرافیای انسانی، 45 (1)، 87-104.
عظیمی، فریده (1387). پهنه­بندی دمای سطح شهر اهواز با استفاده از تصاویر حرارتی سنجندة ETM. فصلنامة جغرافیایی سرزمین، 5 (17)، 97-110.
عقیلی­نصب، زهرا؛ محمدزاده، مرجان؛ سلمان ماهینی، عبدالرسول؛ زارعی، حسین (1392). تحلیل جزایر حرارتی شهری با استفاده از سنجش­ازدور و رابطة آن با توسعة دوست­دار محیط­زیست. محیط­زیست و توسعه، 4 (8)، 79-88.
فیضی­زاده، بختیار؛ دیده­بان، خلیل؛ غلام­نیا، خلیل (1394). برآورد دمای سطح زمین با استفاده از تصاویر ماهوارة لندست 8 و الگوریتم پنجرة مجزّا (مطالعة موردی: حوضة آبریز مهاباد). اطّلاعات جغرافیایی (سپهر)، 25 (98)، 171-181.
کیانی، واحد؛ فقهی، جهانگیر (1394). بررسی ساختار پوشش/ کاربری حوزة آبخیز سفیدرود با استفاده از سنجه­های بوم‌شناسی سیمای سرزمین. علوم و تکنولوژی محیط زیست، 2 (17)، 131-141.
محمدپور، مهدی، عبدی، ناصر؛ المدرسی، سیدعلی (1393). آشکارسازی تغییرات کاربری اراضی با استفاده از پردازش تصاویر ماهواره­ای و متریک­های سیمای سرزمین: مطالعة موردی شهر ارومیه. نخستین همایش ملّی کاربرد مدل­های پیشرفتة تحلیل فضایی (سنجش­ازدور و GIS) در آمایش سرزمین، دانشگاه آزاد اسلامی واحد یزد.
میرزایی، محسن؛ ریاحی­بختیاری، علیرضا؛ سلمان ماهینی، عبدالرسول؛ غلامعلی­فرد، مهدی (1392). بررسی تغییرات پوشش اراضی استان مازندران با استفاده از سنجه­های سیمای سرزمین بین سال‌های ۱۳63-1389. اکولوژی کاربردی، 2 (4)، 37-55.
هاشمی، سیدمحمود؛ علوی­پناه، سیدکاظم، دیناروندی، مرتضی (1392). ارزیابی توزیع مکانی دمای سطح زمین در محیط­زیست شهری با کاربرد سنجش از دور حرارتی. محیط­شناسی، 39 (1)، 81-92.
یوسفی، الهام؛ صالحی، اسماعیل؛ قسامی، فاطمه؛ جهانی­شکیب، فاطمه (1393). تحلیل وضعیّت اکولوژیکی فضای سبز شهر بیرجند براساس متریک­های سیمای سرزمین (با تأکید بر وضعیّت پارک­های محلّه­ای و منطقه­ای). فضای جغرافیایی، 14 (46)، 71-88.
References
Aghilinasab, Z., Mohammadzadeh, M., Salman Mahini, A.R. & Zarei, H. (2013). Analysis of Urban Heat Islands Using Remote Sensing and its Relationship with Environment-Friendly Development, Environment and Development, 4 (8), 79-88. (In Persian)
Amiri, R., Weng, Q., Alimohammadi, A. & Alavipanah, SK. (2009). Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113 (12), 2606-2617.
Artis, D. A. & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12 (4), 313-329
Azimi, F. (2008). Thermal classification of Ahvaz city using ETM Thermal Images. Geographical Journal of Territory, 5 (17), 97-110. (In Persian)
Bihamta Toosi, N., Safianian, A. & Fakheran, S. (2013). Analysis of Land Cover Changes in the Central Part of Isfahan (Iran) Using Landscape Metrics, Iranian Journal of Applied Ecology, 2 (6), 87-77. (In Persian)
Brown, G. S., Retti, W. J. & Mallory, F. F. (2006). Application of a variance decomposition method to compare satellite and aerial inventory data: a tool for evaluating wildlife- habitat relationships, journal of Applied Ecology, 43, 73-184
Buyantuyev, A. & Wu, J.G. (2010). Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology. 25, 17-33.
Chang, X. L. & Wu, J. G. (1998). Spatial analysis of pattern of sandy landscapes in Kerqin, Inner Mongolia [J], Acta Ecologica Sinica, 18 (3), 225-232.
Chen, Y. & Yu, S. (2017). Impacts of urban landscape patterns on urban thermal variations in Guangzhou, China. International Journal of Applied Earth Observation and Geoinformation. 54, 65-71.
Clinton, N. & Gong, P. (2013). MODIS detected surface urban heat islands and sinks: global locations and controls. Remote Sensing of Environment. 134, 294-304.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment. 37, 35-46.
Dashtekian, K. & Dehghani Tafti, M. A. (2007). Land surface temperature analysis of desert area in relation with vegetation and urban development using RS and GIS, case study: Yazd-Ashkezar area, Journal of Pajouhesh & Sazandegi, 20 (4), 169-179. (In Persian)
Deng, C. & Wu, C. (2013). Estimating very high resolution urban surface temperature using a spectral unmixing and thermal mixing approach. International Journal of Applied Earth Observation and Geoinformation. 23, 155-164.
Feyzizadeh, B., Dideban, Kh. & Gholamnia, Kh. (2015). Extraction of Land Surface Temperature (LST) based on Landsat Satellite Images and Split Window Algorithm Study area: Mahabad Catchment, Journal of Geographical Data (SEPEHR), 25 (98), 171-181. (In Persian)
Grimm, N.B., Faeth, S.H., Golubiewski, N. E., Redman, C.L., Wu, J., Bai, X. & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319, 756-760.
Gustafson, E. J. & Parker, G. R. (1992). Relationship between land cover proportion and indices of landscape spatial pattern, Landscape Ecology, 7, 101-110.
Hajilo, M., Al-Modarsi, A., Zarang, N. & Sarkargradakani, A. (2014). Monitoring of Land Surface Temperature and Investigating the Relationship between Land Use and Surface Temperature Using ETM + and OLI Sensors (Case Study: Qom Province), First National Conference on the Application of Spatial Analysis Advanced Models in Land Use Planning, Yazd, Islamic Azad University of Yazd, Yazd Municipality. (In Persian)
Hashemi, S. M., Alavipanah, S. K. & Dinarvandi, M. (2013). LST Assessment Using Thermal Remote Sensing in Urban Environment. Journal of Environmental Studies, 39 (1), 81-92. (In Persian)
Heldens, W., Taubenbock, H., Esch, T., Heiden, U. & Wurm, M. (2013). Analysis of Surface Thermal Patterns in Relation to Urban Structure Types: A Case Study for the City of Munich, Thermal Infrared Remote Sensing: sensors, methods, applications. 17, 475-493.
Hu, L.Q. & Brunsell, N.A. (2013). The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sens. Environ, 134, 162-174.
Jimenez-Muñoz, J.C. & Sobrino J. (2008). Split window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors. Geoscience and Remote Sensing Letters, 5 (4), 806-809.
Kiyani, V. & Feqhhi, J. (2015). Investigation of Cover/Land Use Structure of Sefidrod Watershed by Landscape Ecology Metrics. Journal of Environmental Science and Technology, 2 (17), 131-141. (In Persian)
Lazzarini, M., Marpu, P. R. & Ghedira, H. (2013). Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment, 130, 136-152.
Lenney, M. P., Woodcock, C. E., Collins, J. B. & Hamdi, H. (1996). The status of agricultural lands in Egypt: the use of multi temporal NDVI features derived from Landsat TM. Remote Sensing of Environment, 56 (1), 8-20.
Li, J., Song, C., Cao, L., Zhu, F., Meng, X. & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sensing of Environment. 115, 3249-3263.
Li, J.J., Wang, X.R., Wang, X.J., Ma, W.C. & Zhang, H. (2009). Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol. Complexity, 6, 413-420.
Ma, K. M. & Fu, B. J. (2000). Spatial neighboring and distribution regularities of landscape types in Donglingshan mountain region, Acta Ecologica Sinica, 20 (5), 748 752.
Mirzayi, M., Riahi Bakhtiari, A., Salman Mahini, A. R. & Gholamalifard, M. (2013). Investigating the Land Cover Changes in Mazandaran Province Using Landscape Ecology’s Metrics Between 1984 - 2010, Iranian Journal of Applied Ecology, 2 (4), 37-55. (In Persian)
Mohammadpour, M., Abdi, N. & al-Modarsi, A. (2014). Detecting Land Use Changes Using Satellite Images and Landscape Metrics Processing: A Case Study in Urmia, First National Conference on the Application of Spatial Analysis Advanced Models in Land Use Planning, Islamic Azad University, Yazd Branch. (In Persian)
Myint, S. W., Wentz, E. A., Brazel, A. J. & Quattrochi, D. A. (2013). The impact of distinct anthropogenic and vegetation features on urban warming. Landscape Ecology, 28, 959-978.
Ramezani, B. & Dokht Mohammad, M. (2010). Recognition of the Spatial Heat Island Formation in Rasht. Research and Urban Planning, 1 (1), 49-64. (In Persian)
Soffianian, A., Mokhtari, Z., Khajeddin, S. J. & Ziaei, H. R. (2013). Gradient Analysis of Urban Landscape Pattern Case Study: Isfahan City. Human Geography Research, 45 (1), 87-104. (In Persian)
Sun, R., Chen, L. (2012). How can urban water bodies be designed for climate adaptation?. Landscape Urban Planning, 105, 27-33.
Teymouri, H., Moradi, A. & Teymouri, H. (2014). Using Landscape Metrics and Remote Sensing in Evaluating the Process of Urban Development Changes for Planning to Achieve Sustainable Development, First National Conference on Urban Planning, Urban Management and Sustainable Development, Iranian Institute of Architecture, Tehran, Iran. (In Persian)
Turner, M. G., Gardner, R. H. & O’Neill, R. V. (2001). Landscape Ecology in Theory and Practice, Springer-Verlag, New York, NY, USA.
Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J. Photogramm. Remote sensing. 64, 335-344.
Weng, Y.C. (2007). Spatiotemporal changes of landscape pattern in response to urbanization. Landscape and urban planning, 81 (4), 341-353.
Xie, M., Wang, Y., Chang, Q., Fu, M. & Ye, M. (2013). Assessment of landscape patterns affecting land surface temperature in different biophysical gradients in Shenzhen, China. Urban Ecosystems. 16 (4), 871-886.
Yousefi, E., Salehi, E., Qasami, F. & Jahani-Shakib, F. (2014). The Ecological Status of Green Space in Birjand with Emphasis on the Regional and Local Parks Based on Landscape Metrics. Journal of Geographical Space, 14 (46), 71-88. (In Persian)
Yue, W., Liu, Y., Fan, P., Ye, X. & Wu, C. (2012). Assessing spatial pattern of urban thermal environment in Shanghai, China. Stochastic Environ. Res. Risk Assess, 26 (7), 899-911.
Zebardast, L., Yavari, A. R., Salehi, E. & Makhdoum, M. (2011). Using Landscape Ecological Metrics to Investigate Impacts of Road on Structural Changes in Golestan National Park During 1987 to 2010, Environmental Researches, 2 (4), 11-20. (In Persian)
Zeng, Y. N., Wu, G. P., Zhan, F. B. & Zhang, H. H. (2008). Modeling Spatial Land Use Pattern Using Autologistic Regression, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Part B2, 115-118
Zhou, D., Zhao, S., Liu, S., Zhang, L. & Zhu, C. (2014). Surface urban heat island in China’s 32 major cities: spatial patterns and drivers. Remote Sensing of Environment, 152, 51-61.
Zhou, W., Huang, G. & Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape Urban Planning, 102, 54-63.