Qualitative Assessment and Risk Zoning of Soil Erosion with a Risk Index Approach in Alvand Karstic Basin, Kermanshah Province

Document Type : Research Paper

Authors

Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran.

Abstract

Soil erosion is one the main threats to water and soil resources in the world, as well as arid and semi-arid country of Iran. Soil erosion have a strong relationship with vegetation type and land use. Soil erosion especially in the karst areas led to phenomenon of Rock desertification and to block the channels of karst. The present paper aims at studying the karstic basin of Alvand River in the west of Kermanshah province for three years 1990، 2005 and 2018 by applying Erosion risk index model and satellite images Thematic Mapper (TM) and Operational Land Imager. The findings reveal that the vegetation of Arvand basin has had a decreasing rate in which 30% of the area has decreased from 1990 to 2018. The number of land use classes and their area during this time period have had significant changes. In the selected years, there was no very low erosion zone in any final maps of erosion in the basin. The medium erosion zone has the largest area in all three final maps of the soil erosion. The high and the low erosion zones have been the second and the third wide erosion zones in all the three final maps of the soil erosion, respectively. The very high erosion zone has been consistent with the karst area of the basin. Slope, heavy rainfall, and low-thickness soil have been the most important reasons for high soil erosion in the karst areas of the basin.
Extended Abstract
1-Introduction
The process of soil erosion leads to some changes in soil, the loss of nutrients and the decrease in its dewatering capacity. Soil erosion and its loss of productivity limit the structure and distribution of land use and exacerbate tension between human and land resources. Land use and land cover are two important factors affecting the formation and severity of runoff and soil erosion. The destructive phenomenon of soil erosion in sensitive karst areas has the consequence of rock desertification. The desertification in the karstic areas refers to the process of land degradation, in which the soil completely eroded. A large part of the Alvand river basin in the west of Kermanshah province has developed karst geomorphology, which has had an effect on the erosion of the basin. Due to the lack of appropriate and comprehensive quantitative data at the catchment area, a qualitative assessment of soil erosion at the surface of this karstic zone is necessary for the management of the environment. The purpose of this study is to assess and qualify soil erosion in the Alvand basin using Erosion risk index model in a 28-year time series
2-Materials and Methods
This study uses Erosion risk index model to assess and qualitatively determine soil erosion in Alvand karstic basin. In this model, the topographic slope parameters, annual precipitation, soil texture, cover and land cover are used to prepare a quality erosion zoning map and each parameter is divided into five different levels with assigned values. In the model, the erosion zoning map for the years 1990, 2005, and 2018 is provided. Two parameters of land use and vegetation cover as variable parameters in the selected years are combined with three other constant parameters. Table (1) shows the five classes of each of the five selected parameters and the privileges assigned to them. Finally, based on the quality of soil erosion risk index (Eq. 4), an alvetian erosion risk map is prepared. After calculating the erosion rate according to table (4), the final soil erosion map is classified into five classes. Data were collected from Landsat satellite imagery, ten meters DEM, weather data stations and regional soil maps.
Equation 4:
Erosion risk index = 0.33* rainfall ‏+ 0.27 * vegetation coverage+ ‏ 0.2 * slope ‏+ 0.13 *landcover +‏ 0.07 * soil type
3-Results and Discussion
All three soil erosion mapping maps have four low risk, medium, high and high risk levels, and there is very little erosion class in any of the maps. The average erosion zone in each of the three final maps has the highest soil erosion (Table 10). The high and low erosion zones are respectively the second and third largest erosion zones in all three final maps of soil erosion. The erosion zone in the selected years has an area less than one square kilometer from the Alvand Basin. The low erosion zone in all three maps of the final erosion is consistent with the agricultural land and gardens of the plains of Gilan-e-Gharb, Deira, Qal'-Shahin-Sar-e-Pul-e-Zahab, Khafar and Pathagh The average erosion zone corresponds to most of the basin areas, including plains, hillsides and mountainous regions. The high erosion zone corresponds to the slopes of the mountains in the north and east of the basin. The low erosion zone is affected by slope parameters, soil texture, and low rainfall, vegetation cover of more than 45% and agricultural use and gardens. Moderate erosion zone is also more affected by two parameters of land use and vegetation. Because of the texture of the soil, rainfall and steepness of the topography of this range are very unstable. The high erosion zone is also affected by topographic slope parameters, soil texture and precipitation. High erosion areas mainly correspond to the alveolar karstic areas, which indicates that in the karst areas of the basin, due to sloping, shallow soil and high rainfall, soil erosion is more severe than other areas of the basin.
4-Conclusion
The results showed that vegetation cover variations in selected years had a high correlation with the NDVI index and in the period of 28 years, vegetation density in the Alvand basin had a downward trend. The study of the number of land use classes and their area in the Alvand Basin during the period from 1990 to 2018 has been significantly altered. Residential and lake dwellings have increased over the years and their area in 2018 has increased by about 8 km2 compared to 1990. Agricultural, pasture and forest use decreased by 7, 14 and 17 square kilometers, respectively. The final quality maps of Alvand basin erosion indicate that the basin environmental conditions are suitable for the occurrence of soil erosion process. During the selected years, the erosion of soil in 2005 was more severe than in the years 1990 and 2018, so that the extent of the erosion area is about 8% more than the other two years. In the dry year 2005, vegetation was lower than other years, and the erosion rate was more severe than the other two years. The land use parameter has been limited over the past 28 years, and the parts that have lost the ownership of the residential and Lake Dam have not played a role in exacerbating erosion. In terms of spatial distribution, the erosion zones in the three years of selection show the same overall trend. The erosion zone corresponds to the karstic areas of the basin in the northern and eastern highlands of the basin. Slope, high rainfall and low-density soil are the most important reasons for soil erosion in the basin's karstic areas.Precision estimation of final soil erosion maps with error matrices and their degree of similarity reflects the effect of changes in vegetation and land use in soil erosion.
 

Keywords

Main Subjects


باقری سیدشکری، سجاد (1394). تأثیر ژئومورفولوژی کارست در ویژگی­های کمّی و کیفی آبخوان­های کارستی حوضه‌های قره­سو و الوند در استان کرمانشاه. رسالة دکتری ژئومورفولوژی، دانشگاه تهران.
باقری سیدشکری, سجاد؛ یمانی, مجتبی؛ جعفربیگلو, منصور؛ کریمی, حاجی؛ مقیمی، ابراهیم (1394). بررسی توسعه‌یافتگی و ویژگی‌های هیدرودینامیکی سامانه‌‌های کارستی با استفاده از تجزیه و تحلیل منحنی فرود هیدروگراف (مورد مطالعه: آبخوان‌های کارستی حوضۀ رودخانۀ الوند). پژوهش­های جغرافیای طبیعی، 47(3)، 333-346. شناسة دیجیتال: 2015.55334 JPHGR./10.22059.
برزو، آرش؛ ممیزی، محمدرضا؛ نیک­اندیش، عباسعلی (1387). مقایسة سه روش PSIAC, MPSIAC , EPM در برآورد میزان فرسایش و رسوب در حوضة چهل­چشمة استان فارس. کشاورزیپویا، 5 (1)، 19-29.
جباری، ایرج؛ طالب­پور، داود (1385)، ارزیابی حساسیت نواحی بالادست سدّ مهاباد به فرسایش با استفاده از سنجش از دور و GIS. علوم زمین، 16(62)، 176-187.
رستمی، فرض­الله (1387). اصلاح مدل برآورد رسوب ام­پسیاک با به­کارگیری تکنیک فازی در حوضة سدّ زاگرس. پایان­نامة کارشناسی­ارشد ژئومورفولوژی، دانشگاه خوارزمی.
کریمی، حاجی (1382). رفتار هیدروژئولوژیکی سفره­های کارستی حوضة الوند کرمانشاه. رسالة دکتری ژئومورفولوژی، دانشگاه شیراز.
مقصودی، مهران؛ یمانی، مجتبی؛ سالاری، ممند (1387). برآورد فرسایش و رسوب ازطریق ارزیابی متغیّرهای تأثیرگذار در حوضة آبخیز وزنه با استفاده از GIS . جغرافیا و توسعه، 7 (16)، 119-134.
نادری، فتح­الله؛ کریمی، حاجی؛ ناصری، بهروز (1389). پهنه­بندی پتانسیل فرسایش خاک در حوزة آبخیز آسمان­آباد ایلام به‌روش شاخص فرسایش. پژوهش­های آبخیزداری، 4 (23)، 43-51.
نوری، عباسعلی؛ صفاری، امیر؛ کرمی، جلال (1397). بررسی تأثیر تغییرات پوشش و کاربری زمین در قابلیت فرسایش خاک حوضة قره­سو گرگانرود. تحلیل فضایی مخاطرات محیطی، 5 (1)، 83-96.
نیک­پور، نورالله؛ فتوحی، صمد؛ نگارش، حسین؛ سیستانی، مسعود (1396). مورفومتری فرسایش آبکندی و عوامل مؤثّر بر ایجاد وگسترش آن (حوضة دشت چم فاضل در جنوب غرب استان ایلام). تحلیل فضایی مخاطرات محیطی، 4 (1)، 97-112.
یعقوب­نژاد اصل، نازیلا؛ فتحی، محمدحسین (1394). ارزیابی خطر فرسایش خاک در دامنه­های شمال غرب کلان­شهر تهران. اوّلین کنگرة بین­المللی زمین، فضا، انرژی پاک. کد مقاله ATTITTDE01-571
Refrences
Bagheri Seyed Shokri, S., Yamani, M., Jafar Beyglo, M., Karimi, H. & Moghimi, E. (2016). Investigation of development and hydrodynamic characteristics of karst systems using analysis of hydrograph recession curve, case study: karstic aquifers of Alvand basin. Physical Geography Research, 47 (3), 333-346, doi: 10.22059/JPHGR.2015.55334. (In Persian)
Bagheri, S. (2016). Influence of karst geomorphology on the quantitative and qualitative characteristics of karst aquifers of Ghare-Su and Alvand basins in Kermanshah province. Phd dissertation, University of Tehran. (In Persian)
Borzou, A., Momayezi, M. & Nickandish, A. (2009). comparison of estimating soil erosion and sediment by EPM, PSIAC and MPSIAC methods in Chehl Cheshmeh basin, Fars province. Dynamic agriculture, 5 (1), 19-29 (In Persion)
Bronick, C. J. & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124 (1-2), 3-22.
Cerdan, O., Le Bissonnais, Y., Couturier, A. & Saby, N. (2002). Modelling interrill erosion in small cultivated catchments. Hydrological Processes, 16 (16), 3215-3226.
Dai, Q., Liu, Z., Shao, H. & Yang, Z. (2015). Karst bare slope soil erosion and soil quality: a simulation case study. Solid Earth, 6 (3), 985.‏
Drew, D. P. (1983). Accelerated soil erosion in a karst area: the Burren Western Ireland. Hydrology, 61, 113-124.
Drzewiecki, W., Wezyk, P., Pierzchalski, M. & Szafranska, B. (2013). Quantitative and Qualitative Assessment of Soil Erosion Risk in Małopolska (Poland), Supported by an Object Based Analysis of High-Resolution Satellite Images. Pure and Applied Geophysics (Inpress).
Eswaran, H., Lal, R. & Reich, P. F. (2001). Land degradation: an overview. Responses toLand degradation, 20-35.
Febles, J. M., Tolón, A. & Vega, M. B. (2009). Edaphic indicators for assesment of soil erosion in karst regions, province of Havana, Cuba. Land degradation & development, 20 (5), 522-534.‏
Garcia-Ruiz, J. M. (2010). The effects of land uses on soil erosion in Spain: A review. Catena, 81 (1), 1-11. https://doi.org/10.1016/j.catena.2010.01.001
Ho, H. C., Mylorie, J. E., Infante, L. R. & Rodgers III, J. C. (2014). Fuzzy-based spatial model approach to predict island karst distribution: a conceptual model. Environ. Earth Sci.
71
, 1377-1396.
Huang, W., Ho, H. C., Peng, Y. & Li, L. (2016). Qualitative risk assessment of soil erosion for karst landforms in Chahe town, Southwest China: A hazard index approach. Catena, 144, 184-193.
Jabbari, J. & Talebpour, D. (2007). Assessing the Vulnerability to Soil Erosion of the Mahabad Dam Drainage Basin Using Remote Sensing and GIS, Earth Sciences, 16 (62). 176-178 (In Persion)
Karimi, H. (2004). Hydrogeological behavior of karst aquifers in Alvand basin of Kermanshah, Phd dissertation. Shiraz University. (In Persian)
Kheir, R. B., Abdallah, C. & Khawlie, M. (2008). Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS. Engineering Geology, 99 (3), 239-254.‏
King, C. & Delpont, G. (1993). Spatial assessment of erosion: contribution of remote sensing, a review. Remote Sens. Rev, 7, 223-232.
Li, R. (2011). The research on the process and adjustment of soil erosion in the main water eroded region of China. Bulletin of soil and water conservation, 31 (5), 1-6.
Magsoodei, M., Yamanei, M. & Salarei, M. (2009). Estimation of Erosion and Sediment in Vazneh Basin via Assessment of Effective Variables with use of GIS. Geography and Development, 7 (16), 119-134. (in Persian)
Naderi, F., Karimi, H. & Naseri, B. (2011). Soil erosion potential zoning in Aseman Abad Watershed by Erosion Index. Watershed Management Research, 4 (23), 43-51. (In Persian)
Nikpour, N., Fotohi, S., Negaresh, H. & Sistani, M. (2017). Morphometric of gully erosion (ditch) and factors affecting the development of the basin on southern West ILAM CHAM FAZEL. Spatial Analysis Environmental hazarts, 4 (1), 97-112. (In Persian)
Nori, A., Saffari., A. & Karami, J. (2019). Investigasion about the influence of land-cover and land use changes on soil erodibility potential,case study: Gharesou,Gorganrood. Spatial Analysis Environmental hazarts, 5 (1), 83-96. (In Persian)
Pacheco F. A. L., Varandas S. G. P., Fernandes L. S. & Junior R. V. (2014). Soil losses in rural watersheds with environmental land use conflicts. Sci. Total Environ. 485: 110-120
Qiu-Hao, H. & Yun-Long, C. (2006). Assessment of karst rocky desertification using the radial basis function network model and GIS technique: A case study of Guizhou Province, China. Environmental geology, 49 (8), 1173-1179.
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K. & Yoder, D. C. (1997). Predicting soilerosion by water: a guide to conservation planning with the Revised Universal Soil
Loss Equation
. Agricultural Handbook vol. 703 U.S. Department of Agriculture 404 pp.
Rostami, F. (2009). Modification of the estimation model of M.Psyc sediment by applying fuzzy technique in Zagros dam basin. MA dissertation, Kharazmi University . (In Persian)
Six, J., Elliott, E. T., Paustian, K. & Doran, J. W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62 (5), 1367-1377.
Stillwell, W. G., Seaver, D. A. & Edwards, W. (1981). A comparison of weight approximation techniques in multiattribute utility decision making. Organizational Behavior and Human Performance 28 (1), 62-77.
Stow, D. A., Hope, A., Mcguire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K., Tweedie, C., Noyle, B.,Silapaswan, C., Douglas, D., Griffith, B., Jia, G., Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L. & Myneni, R. (2004). Remote sensing of vegetation and landcoverchange in Arctic tundra ecosystems. Remote Sens. Environ. 89, 281-308.
Van Rompaey, A. J. J. & Govers, G. (2002). Data quality and model complexity for regional
scale soil erosion prediction. Geomorphology 16 (7), 663-680.
Vrieling, A. (2006). Satellite remote sensing for water erosion assessment: a review. Catena, 65, 2-18.
Warren, A. (2002). Land degradation is contextual. Land Degrad. Dev. 13 (6), 449-459.
Wijitkosum, S. (2012). Impacts of land use changes on soil erosion in Pa Deng sub-district, adjacent area of Kaeng Krachan National Park, Thailand. Soil and Water Research, 7 (1), 10-17.
Xu, Y. Q., Peng, J. & Shao, X. M. (2009). Assessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou Province, China. Environ. Geol, 56 (8), 1643-1652.
Xu, Y. Q., Shao, X. M., Kong, X. B., Peng, J. & Cai, Y. L. (2008). Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China. Environ. Monit. Assess. 141 (1-3), 275-286.
Yaghoob Nejad Asl, N. & Fathi, M. H. (2016). Soil Erosion Risk Assessment in northwest slopes. The 1 st International Congress on Earth, Space & Energy, August 2015. (In Persian)
Yang, H. (1995). Karst desertification and assessment of its disasters.Mar Geol . Quaternary Geol 15, 137-147.
Yuan, D. (1997). Rock desertification in the subtropical karat of South China. Z. Geomorphol. Suppl, 108, 81-90.
Yue-Qing, X., Jian, P. & Xiao-Mei, S. (2009). RETRACTED ARTICLE: Assessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou Province, China. Environmental Geology, 56 (8), 1643-1652.
Zeng, C., Wang, S., Bai, X., Li, Y., Tian, Y., Li, Y., Wu, L. & Luo, G. (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 8 (4), 721.‏
Zhou, H. Y., Pan, X. Y. & Zhou, W. Z. (2017). Assessing spatial distribution of soil erosion in a karst region in southwestern China: A case study in Jinfo Mountains. In IOP Conference Series: Earth and Environmental Science (Vol. 52, No. 1, p. 012047). IOP Publishing.