Watershed Health Prediction based on Surface Water Quality Variables (Case Study: Taleghan Watershed)

Document Type : Research Paper

Authors

1 University of Tehran

2 Gorgan University of Agricultural Sciences and Natural Resources

Abstract

Quality of Surface water is one of the important criteria to determine the health of watershed. So its changes determine the state of health and sustainability of environment and human societies. Since in the last decade, due to the use of water resources and its pollution, this vital source has changed, the information of its status in the coming years can play an important role in environmental planning and sustainability of human geography. Taleghan watershed in Alborz province is one of the areas that are affected by these changes. In this research, using the Galinak hydrometric station data and the values of 10 parameters of water quality K, Na, mg, Ca, So4, Cl, Hco3, PH, Ec, TDS in the years (1990-2016), the health status of this area was evaluated using gene expression planning model. Data for years (1990-2006), (2007-2014), (2015-2016) were considered as training, test and error data respectively, and at least one year (from September 2016 until September 2017) as predictive data fitted using an algorithm with R2 0.87 and RMSE 3.003. In this study, the data were normalized and actual data. The results showed that by training in the model, the values of surface water quality variables of Taleghan watershed can be predicted with acceptable accuracy by investigating the data pattern. In general, when the data are normalized, the accuracy of the model is relatively 10% lower than accuracy of model with real data.
Extended Abstract
1-Introduction
The agricultural and industrial activities within the catchment area, as well as the disposal of urban sewage and industrial wastewater, affect the quality of water resources and, in most cases, reduce water quality. The set of changes and behavior that humans create in the watershed changes the state of normal life. One of the manifestations of these changes is to reduce or increase the quality of water. In recent years, we have generally encountered a decline in water quality and quantity. One of the criteria to assess the health and sustainability of a watershed is the study of surface water quality changes. Considering this criterion, the process of watershed changes can be determined. Using normalization of data or data in normal mode plays an important role in research results. We should use models that have the highest accuracy with the least computations and the ability to teach other people to use in all watersheds in Iran. In this study, the gene expression algorithm for modeling water quality data and its changes has been investigated. The current health status of the watershed is determined using the reference table. The proposed algorithm predicts the health status of the watershed until the end of September 2018.
2-Materials and Methods
One of the methods for assessing the existing status of watersheds is to review the water quality and its changes. Considering that Taleghan watershed has different land use changes, these changes have reduced the quality of water resources in this watershed. In order to investigate these changes in different years, the gene expression has been used in data modeling and prediction. Normal mode and normalized data usage are two methods to check data on entering the model. First, the variables that had the most effect on the model were determined and then the gene expression algorithm was created. In order to evaluate the generated model, three factors of determination coefficient, mean error of absolute and root mean square error were used.
3-Results and Discussion
Using the obtained results, it was found that during investigated time, the use of normalized data provides different results than normal data. As well as, variables whose trend is close to the linear trend shows higher modeling accuracy. Among the variables studied in the model training section, the highest correlation between natural data is related to the amount of PH and the lowest amount is magnesium. In the test section, electrical conductivity has the highest correlation, while magnesium has the lowest correlation. During the period of this study, the EC and TDS are 483.33 and 271.50, which are categorized as "healthy". Recorded data does not show any better value in this watershed. Water quality values, used from variables related to the watershed potential, show a relatively stable trend over time. The results show that data normalization has reduced the accuracy of the model and the impact rank in the model is different. Environmental data often has a nonlinear process which reduces the modeling accuracy. According to the average coefficient of determination 0.87, it is expected that by the end of September 2018, the health status of the watershed will have been reduced to 27 and fall within the scope of recurrent cancer.
4-Conclusion
This study was carried out using water quality data at Galinak station in Alborz province. The results of this study indicated that normalizing data to reduce the amount of data for increase the speed of their analysis, can affect the true results of modeling. The reference values of variables in each vary watershed according to their potential, and it is not possible to provide the same reference points for all watersheds in Iran. Changes in the natural data process, especially in annual scale, are slow, and it is recommended to pay attention to the causes of these changes. The results of this study showed that data modeling using the gene expression in terms of speed in data processing and accuracy in the results is acceptable and gives accuracy of over 70% in all variables. It is suggested that modeling of water quality data using normalization of numbers and natural conditions in other watersheds should be done in order to evaluate the accuracy of the model in both modes.
 
 

Keywords


ابراهیمی، پیام (1396) بررسی و مدل­سازی روند تغییرات شاخص­های سلامت و پایداری حوضة آبخیز (مطالعة موردی: حوضة آبخیز طالقان)، رسالة دکتری علوم و مهندسی آبخیز، گرایش آب، اساتید راهنما: علی سلاجقه و محسن محسنی ساروی، دانشگاه تهران، تهران.
امامقلی‌زاده، صمد؛ کریمی دمنه، راضیه؛ اژدری، خلیل (1395) مقایسة روش­های متداول برآورد بار رسوب معلّق رودخانة کرخه با روش برنامه­ریزی بیان­ژن، جغرافیا و توسعه، 14 (45)، صص. 140-121.
باباعلی، حمیدرضا؛ دهقانی، رضا (1396) مقایسة مدل­های هوشمند در تخمین بارش ماهانة حوضة کاکارضا، اکوهیدرولوژی، 4 (1)، صص. 11-1.
برجی حسن گاویار، مسلم؛ مقدم‌نیا، علیرضا؛ ساجدی، فرزانه (1396) بررسی کارایی دو روش داده محور در پیش‌بینی بارندگی ماهانه، پژوهش­های دانش زمین، 8 (31)، صص. 61-42.
بهمنش، جواد؛ مصطفوی، سمیه؛ زمان‌زاد قویدل، سروین (1396) استفاده از محاسبات نرم در پیش‌بینی و برآورد دبی جریان و بررسی جریان زیست‌محیطی (مطالعة موردی: رودخانة خرخره چای)، نشریة مهندسی عمران و محیط‌زیست، 47 (3)، صص. 22-9.
حقیقت‌جو، پرویز؛ محمدزاده شاهرودی، زهرا؛ محمدرضاپور، ام البنی (1396) مقایسه روش­های سیستم استنتاج عصبی-فازی و برنامه­ریزی بیان­ژن در برآورد تبخیر از تشتک (مطالعة موردی: استان خراسان جنوبی)، نشریة حفاظت منابع آب‌وخاک، 6 (4)، صص. 117-107.
دهقانی، رضا؛ قربانی، محمدعلی؛ تشنه‌لب، محمد؛ ریخته‌گر غیاثی، امیر؛ اسدی، اسماعیل (1394) مقایسه و ارزیابی مدل­های شبکه عصبی بیزین، برنامه­ریزی بیان­ژن، ماشین بردار پشتیبان و رگرسیون خطی در تخمین بده جریان؛ مطالعه موردی حوضه صوفی چای، مهندسی آبیاری و آب، 5 (20)، صص. 85-66.
زمانی، رضا؛ احمدی، فرشاد؛ رادمنش، فریدون (1393) مقایسة روش­های برنامه­ریزی بیان­ژن، سری زمانی غیر خطّی، خطّی و شبکة عصبی مصنوعی در تخمین دبی روزانه (مطالعة موردی: رودخانة کارون)، نشریه آب‌وخاک، 28 (6)، صص. 1182-1172.
ستاری، محمدتقی؛ میرعباسی نجف‌آبادی، رسول؛ عباسقلی نایب‌زاد، مهدی (1396) استفاده از داده‌کاوی در پیش‌بینی کیفیّت آب­های سطحی (مطالعة موردی: رودخانه­های دامنة شمالی سهند)، اکوهیدرولوژی، 4 (2)، صص. 419-407.
سلگی، اباذر؛ زارعی، حیدر؛ گلابی، محمدرضا (1396) بررسی عملکرد مدل برنامه‌ریزی بیان­ژن با روش­های پیش‌پردازش دادها جهت مدل­سازی جریان رودخانه، پژوهش­های حفاظت آب‌وخاک، 24 (2)، صص. 201-185.
قبادیان، رسول؛ قربانی، محمدعلی؛ خلج، معصومه (1392) بررسی عملکرد روش برنامه­ریزی بیان ژن در روندیابی سیلاب رودخانة زنگمار در مقایسه با روش موج دینامیکی، نشریة آب‌وخاک، 27 (3)، صص. 602-592.
قربانی، محمدعلی؛ دهقانی، رضا (1395) کاربرد شبکه‌ای عصبی بیزین، ماشین بردار پشتیبان و برنامه‌ریزی بیان­ژنی در تحلیل بارش رواناب ماهانه (مطالعة موردی: رودخانة کاکارضا)، علوم و مهندسی آبیاری، 39 (2)، صص. 138-125.
قربانی، محمدعلی؛ دهقانی، رضا (1396) مقایسة روش­های شبکة عصبی بیزین، شبکه عصبی مصنوعی و برنامه­ریزی بیان­ژن در تحلیل کیفیّت آب رودخانه­ها (مطالعة موردی: رودخانه بالخلوچای)، پژوهشنامة مدیریت حوضة آبخیز، 8 (15)، صص. 24-13.
قربانی، محمدعلی؛ صالحی، ابوذر (1390) استفاده از برنامه­ریزی بیان­ژن در بررسی تغییرات داده­های کیفی آب زیرزمینی با نوسانات سطح آب در دشت برخوار اصفهان، ششمین کنگرة ملّی مهندسی عمران، سمنان، دانشگاه سمنان، https://www.civilica.com/Paper-NCCE06-NCCE06_0098.html
Ahn, S. R., Kim, S. J. (2017) Assessment of Integrated Watershed Health Based on the Natural Environment, Hydrology, Water Quality, and Aquatic Ecology, Hydrol. Earth Syst. Sci., 21, 5583-5602.
Fithriasari, K., Brodjol, N., Sutikno, U., Kuswanto, H. (2013) Prediction of Hourly Rainfall Using Bayesian Neural Network with Adjusting Procedure, The Third Basic Science International Conference, M24, pp. 1-5.
Grosel, P., Zadnik Stirn, L. (2015) The Environmental Management Problem of Pohorje, Slovenia: A New Group Approach within ANP - SWOT Framework, Environ Manage, 161, pp. 106-112.
Karimi, S., Shiri, J., Kisi, O., Shiri, A. A. (2015) Short-Term and Long-Term Stream Flow Prediction by Using 'Wavelet-Gene Expression' Programming Approach, ISH Journal of Hydraulic Engineering, 22 (2), pp. 1-15.
Petousis, P., Han, S. X., Aberle, D., Bui, A. A. (2016). Prediction of Lung Cancer Incidence on the Low-Dose Computed Tomography Arm of the National Lung Screening Trial: A Dynamic Bayesian Network, Artif Intell Med, 72, pp. 42-55.
Terzi, O. (2013) Daily Pan Evaporation Estimation Using Gene Expression Programming and Adaptive Neural Based Fuzzy Inference System, Neural Computing and Applications, 23 (3-4), pp. 1035-1044.
Yahya, S. M., Rahman, A. U., Abbasi, H. N. (2012) Assessment of Seasonal and Polluting Effects on the Quality of River Water by Using Regression Analysis: A Case Study of River Indus in Province of Sindh, Pakistan, International Journal of Environmental Protection, 2 (2), pp. 10-16.
Yassin, M. A., Alazba, A. A., Mattar, M. A. (2016) Artificial Neural Networks Versus Gene Expression Programming for Estimating Reference Evapotranspiration in arid Climate, Agricultural Water Management, 163, pp. 110-124.