Comparative Study of Multiple Supervised Classification Methods to Map Land Use in Local and Regional Scales (Case Study:Kan and Karaj Rivers Basin)

Document Type : Research Paper

Authors

Abstract

Land management leading to sustainable development requires reliable and update data on land cover/use and mapping its changes at various spatial and temporal scales. In this aspect, water resources management also needs to assess land use and its changes across the basin to maintain water quality for a variety of uses. Thus, the primary goal of this study is to evaluate the effectiveness of various spectral-based supervised classification methods of Operational Land Imager (OLI) data for mapping land use across the Kan and Karaj Rivers basin. At the Anderson Level 1 and 2, the basin’s land use was mapped in five and nine classes, respectively using a broad range of different supervised classification methods, including Parallelepiped, Minimum Distance, Mahalanobis Distance, Maximum Likelihood, Spectral Angle, Binary Encoding, Spectral Information Divergence, Neural Net and Support Vector Machine. All classification methods were verified using the Google Earth images and accurate ground control points, in which the Maximum Likelihood method of both levels with Kappa coefficient of 0.77 and 0.76 and overall accuracy of 84.94 and 80.70 percent, identified as the optimum method to map the land use at the local and regional scales respectively. In addition, following the named method, the Neural Net, Support Vector Machine and the Mahalanobis Distance methods also showed acceptable accuracy indicating that like the choice of classification method, precision in procedures and accuracy assessment of land use classification map is very important and could affect the results.
Extended Abstract
1-Introduction
 Sustainable land management requires reliable and update data on land cover/use and mapping its changes at various spatial and temporal scales. In this aspect, water resources management also needs to assess land cover/use changes across the basin to maintain water quality for a variety of uses. Optical remote sensing plays a vital role in defining land cover/use and monitoring interaction between nature and human activities across various levels from local to regional scales. Furthermore, over the past decades, along with the development of computer science and information technology, different methods of land use mapping has been developed using remotely sensed data that provide cost-effective and accurate means to derive land cover/use resources information. Out of all factors that influence the complex process of land cover/use mapping, appropriate classification system and approaches affect the land cover/use outcomes. Thus, the primary goal of this study is to evaluate the effectiveness of various spectral-based supervised classification methods of Operational Land Imager (OLI) data for mapping land cover/use across the Kan and Karaj Rivers basin.
2- Materials and methods: The Kan and Karaj Rivers basin is located in Tehran province and South Alborz Protected Area in Alborz province. Having a perfect and cloud-free coverage, three Operational Land Imager images were used to map the land cover/use of the Kan and Karaj Rivers basin. They were extraxted from the United States Geological Survey in 2013 and the 2 to 7 bands with 30m spatial resolution were combined. Then, at the Anderson Level 1 and 2, the basin’s land cover/use was mapped in five classes including built-up land, farmland, rangeland, bare land and water bodies and nine including built-up land, crop land, orchard, good-quality, moderate-quality and low-quality rangelands, bare land and rock areas and water bodies using a broad range of different supervised classification methods, including Parallelepiped, Minimum Distance, Mahalanobis Distance, Maximum Likelihood, Spectral Angle, Binary Encoding, Spectral Information Divergence, Artificial Neural Net and Support Vector Machine using ENVI software. Two separate categories of points from Google Earth, as training and ground control points, were taken for image classification and the classification accuracy assessment, respectively. In addition, these points for each land cover/use class were obtained in accordance with land cover/use map (1:250,000) from National Cartographic Center. All classification methods were verified using the Google Earth images and accurate ground control points. Besides, confusion matrices including Kappa coefficient, producer’s accuracy, user’s accuracy and overall accuracy were applied to make accurate assessment of supervised classification. Furthermore, at the Anderson Level 1 and 2, the area of land cover/use classes of three methods was obtained. They have acceptable Kappa coefficient
3- Results and Discussion: The findings from accuracy assessment of classification at the Anderson Level 1 and 2 showed that the Maximum Likelihood method with Kappa coefficient of 0.77 and 0.76 and overall accuracy of 84.94 and 80.70 percent were identified as the optimum method to map the land cover/use of the Kan and Karaj Rivers basin at the local and regional scales respectively. In addition, following the aforesaid method, at the Anderson Level 1, Artificial Neural Networks and Mahalanobis Distance methods and at the Anderson Level 2, the Artificial Neural Networks and Support Vector Machine methods also showed acceptable Kappa coefficient in land cover/use mapping. Based on the findings, it could be concluded that the Artificial Neural Network method had better performance in the classification of land cover/use with different and high classes than other methods. Moreover, when the training points are low, the Support Vector Machine method had better performance and achieved to high accuracy than other methods. At the Anderson Level 1, the most and least differences between the land cover/use classes areas were related to rangeland and water bodies classes, respectively whereas at the Anderson Level 2, the most and least differences between the land cover/use classes areas were related to crop land and water bodies classes, respectively.
4- Conclusion: Based on the findings, Maximum Likelihood and Artificial Neural Network classification methods were more appropriate respectively, and had relatively stable performance than the other methods. So, apart of the method, acceptable land cover/use map only can be extracted by increasing the number of training points and accurately determining the location of training points in two Anderson levels. In summary, the results of this study indicated that like the choice of classification method, precision in procedures and accuracy assessment of land cover/use classification map are very important being able to affect the results.

Keywords


آرخی، صالح (1393) تهیّة نقشة کاربری اراضی دشت عباس ایلام با استفاده از روش‌های شبکة عصبی مصنوعی، ماشین بردار پشتیبان و بیشینة احتمال، مرتعداری، 1 (2)، صص. 43-30.
احمدی ندوشن، مژگان؛ سفیانیان، علیرضا؛ خواجه‌الدّین، سیّد جمال‌الدّین (1388) تهیّة نقشة پوشش اراضی شهر اراک با استفاده از روش‌های طبقه‌بندی شبکة عصبی مصنوعی و حداکثر احتمال، پژوهش‌های جغرافیایی طبیعی، 41 (69)، صص. 98-83.
اکبری، الهه؛ ابراهیمی، مجید؛ امیراحمدی، ابوالقاسم (1392) تهیّة نقشة کاربری اراضی شهر سبزوار با استفاده از روش‌های حداکثر احتمال و شبکة عصبی مصنوعی پرسپترون چند لایه، آمایش محیط، 6 (23)، صص. 148-127.
تراهی، علی اصغر؛ عدلی عتیق، رسول؛ حسنی مقدم، حسن (1394) ارزیابی قابلیت الگوریتم‌های طبقه‌بندی نظارت شده در تهیّة نقشة کاربری اراضی (مطالعة موردی: شهرستان اردبیل)، اوّلین کنفرانس ملّی فنّاوری اطّلاعات مکانی، صص. 9-1.
سبزقبایی، غلامرضا؛ دشتی، سیده سولماز؛ بزم‌آرا بلشتی، مژگان؛ جعفرزاده، کاوه (1394) آشکارسازی روند تغییرپذیری منطقة حفاظت‌شده حرای خورخوران، زیست‌شناسی دریا، 7 (26)، صص. 12-1.
سفیانیان، علیرضا؛ خداکرمی، لقمان (1390) تهیّه نقشة کاربری اراضی با استفاده از روش طبقه‌بندی فازی (مطالعة موردی سه زیرحوزه آبخیز کبودر آهنگ، رزن - قهاوند و خونجین - تلخاب در استان همدان)، آمایش سرزمین، 3 (4)، صص. 114-95.
علیپور، فریده؛ آق خانی، محمدحسین؛ عباسپورفرد، محمدحسین؛ سپهر، عادل (1393) تفکیک محدوده و تخمین سطح زیر کشت محصولات کشاورزی به کمک تصاویر ماهواره‌ایETM+  (مطالعة موردی: مزرعة نمونة آستان قدس رضوی)، ماشین‌های کشاورزی، 4 (2)، صص. 254-244.
فتحی‌زاد، حسن؛ فلاح شمسی، رشید؛ مهدوی، علی؛ آرخی، صالح (1394) مقایسة دو روش طبقه‌بندی حداکثر احتمال و شبکة عصبی مصنوعی آرتمپ فازی در استخراج نقشة پوشش مرتعی (مطالعة موردی: مرتع حوزة دویرج دهلران)، تحقیقات مرتع و بیابان ایران، 22 (1)، صص. 72-59.
گودرزی‌مهر، سعید؛ علی‌عباسپور، رحیم؛ احدنژاد، وحید؛ خاکباز، باهره (1391) مقایسة روش ماشین بردار پشتیبان با روش‌های حداکثر احتمال و شبکة عصبی برای تفکیک واحدهای سنگ‌شناسی، زمین‌شناسی ایران، 6 (22)، صص. 92-75.
محمدی، صدیقه (1395) تعیین بهترین الگوریتم طبقه بندی نظارت شده جهت تهیه نقشه کاربری اراضی با استفاده از تصاویر ماهواره‌ای (مطالعه موردی: شهرستان بافت)، علوم مراتع، 6 (4)، صص. 308-297.
مختاری، محمد حسین؛ نجفی، احمد (1394) مقایسة روش‌های طبقه‌بندی ماشین بردار پشتیبان و شبکة عصبی مصنوعی در استخراج کاربری‌های اراضی از تصاویر ماهواره‌ای لندست TM، علوم و فنون کشاورزی و منابع طبیعی (علوم آب و خاک)، 19 (72)، صص. 44-35.
نیازی، یعقوب؛ اختصاصی، محمدرضا؛ ملکی‌نژاد، حسین؛ حسینی، سیّد زین‌العابدین؛ مرشدی، جعفر (1389) مقایسة دو روش طبقه‌بندی حداکثر احتمال و شبکة عصبی مصنوعی در استخراج نقشة کاربری اراضی (مطالعة موردی: حوزة سدّ ایلام)، جغرافیا و توسعه، 8 (20)، صص. 132-119.
یوسفی، صالح؛ تازه، مهدی؛ میرزایی، سمیه؛ مرادی، حمیدرضا؛ توانگر، شهلا (1393، الف) مقایسة الگویتم‌های مختلف طبقه‌بندی تصاویر ماهواره‌ای در تهیّة نقشة کاربری اراضی (مطالعة موردی: شهرستان نور)، سنجش از دور و سامانة اطّلاعات جغرافیاییدر منابع طبیعی، 5 (3)، صص. 76-67.
Al-Ahmadi, F. S., Hames, A. S. (2009) Comparison of Four Classification Methods to Extract Land Use and Land Cover from Raw Satellite Images for Some Remote Arid Areas, Kingdom of Saudi Arabia, JKAU, Earth Sci, 20 (1), pp. 167-191.
Dixon, B., Candade, N. (2008) Multispectral Land Use Classification Using Neural Networks and Support Vector Machines: One or the Other, or Both?, International Journal of Remote Sensing, 29 (4), pp. 1185-1206.
Foody, G. M. (2001) Thematic Mapping from Remotely Sensed Data with Neural Networks: MLP, RBF and PNN Based Approaches, Geographical Systems, 3 (3), pp. 217–232.
Li, C., Wang, J., Wang, L., Hu, L., Gong, P. (2014) Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery, Remote Sens, 6 (2), pp. 964-983.
Liu, X. H., Skidmore, A. K., Oosten, H. V. (2002) Integration of Classification Methods for Improvement of Land-Cover Map Accuracy, ISPRS Journal of Photogrammetry and Remote Sensing, 56 (4), pp. 257-268.
Otukei, J. R., Blaschke, T. (2010) Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms, International Journal of Applied Earth Observation and Geoinformation, 12 (1), pp. S27-S31.
Perumal, K., Bhaskaran, R. (2010) Supervised Classification Performance of Multispectral Images, Computing, 2 (2), pp. 124-129.
Sanhouse-García, A. J., Rangel-Peraza, J. G., Bustos-Terrones, Y., García-Ferrer, A., Mesas-Carrascosa, F. J. (2016) Land Use Mapping from CBERS-2 Images with Open Source Tools by Applying Different Classification Algorithms, Physics and Chemistry of the Earth, Parts A/B/C,91, pp. 27-37.
Shao, Y., Lunetta, R. S. (2012) Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points, ISPRS Journal of Photogrammetry and Remote Sensing, 70, pp. 78–87.
Sunar Erbek, F., Özkan C., Taberner, M. (2004) Comparison of Maximum Likelihood Classification Method with Supervised Artificial Neural Network Algorithms for Land Use Activities, International Journal of Remote Sensing,25 (9), pp. 1733–1748.
Yousefi, S.; Mirzaee, S., Tazeh, T., Pourghasemi, H.; Karimi, H. (2015) Comparison of Different Algorithms for Land Use Mapping in Dry Climate Using Satellite Images: A Case Study of the Central Regions of Iran, Desert, 20 (1), pp. 1-10.