Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J.J. (2017). Hyperspectral Imaging: A Review on UAV-Based Sensors, data processing and applications for agriculture and forestry. Remote Sens, 9, 1110. doi: 10.3390/rs9111110
Ahamed, T., Tian, L., Zhang, Y., & Ting, K. C. (2011). A review of remote sensing methods for biomass feedstock production. Biomass and bioenergy, 35(7), 2455-2469. doi: 10.1016/j. biombioe.2011.02.028
Aschbacher, J., & Milagro-Pérez, M.P. (2012). The european earth monitoring (GMES) programme status and perspectives. Remote Sensing of Environment, 120, 3–8. doi: 10.1016/j.rse.2011.08. 028
Attarchi, S., & Gloaguen, R. (2014). Improving the estimation of above ground biomass using dual polarimetric PALSAR and ETM+ data in the Hyrcanian mountain forest (Iran). Remote Sensing, 6, 3693-3715. doi: 10.3390/rs6053693
Bajwa, S., Zhang, Y., & Shirzadifar, A. (2018). Hyperspectral Image Data Mining. Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation. CRC Press, 273-302. doi: 10.1201/9781315164151-10
Barboza, T. O., Ardigueri, M., Souza, G. F., Ferraz, M. A., Gaudencio, J. R., & Santos, A. F. (2023).Performance of Vegetation Indices to Estimate Green Biomass Accumulation in Common Bean. AgriEngineering, 5, 2, 840–854. doi: 10.3390/agriengineering5020052
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. doi: 10.1023/A:1010933404324
Buschmann, C. (1993). Fernerkundung von Pflanzen: Ausbreitung, Gesundheitszustand und Produktivität. Naturwissenschaften, 80 (10), 439-453. https://link.springer.com/article/10. 1007/BF01136034
Chang, J., & Shoshany, M. (2016). Mediterranean shrublands biomass estimation using Sentinel-1 and Sentinel-2. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5300-5303). IEEE.
Chinembiri, T.S., Bronsveld, M.C., Rossiter, D.G., & Dube, T. (2013). The precision of C stock estimation in the Ludhikola watershed using model-based and design-based approaches. Natural Resources Research, 22, 297–309. doi: 10.1007/s11053-013-9216-6.
David, R. M., Rosser, N. J., & Donoghue, D. N. M. (2022). Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sensing of Environment, 282, 113232. doi: 10.1016/j.rse.2022. 113232.
Gara, T. W., Murwira, A., Chivhenge, E., Dube, T., & Bangira, T. (2014). Estimating wood volume from canopy area in deciduous woodlands of Zimbabwe. Southern Forests: A Journal of Forest Science, 76(4), 237–244. doi: 10.2989/20702620.2014.965981
Gómez, D., Salvador, P., Sanz, J., & Casanova, J.L. (2019). Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data. Remote Sensing, 11 (15), 1745. doi: 10.3390/ rs11151745
Güneralp, İ., Filippi, A. M., & Randall, J. (2014). Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling. International Journal of Applied Earth Observation and Geoinformation, 33, 119–126. doi: 10.1016/j.jag.2014.05.004.
Huete, A. R., Liu, H. Q., Batchily, K. V., & Van Leeuwen, W. J. D. A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote sensing of environment, 59 (3), 440-451. doi: 10.1016/S0034-4257(96)00112-5
Imran, A. B., & Ahmed, S. (2018). Potential of Landsat-8 spectral indices to estimate forest biomass. International Journal of Human Capital in Urban Management, 3(4), 303-314. doi: 10.22034/IJHCUM.2018.04.04
Imran, A. B., Khan, K., Ali, N., Ahmad, N., Ali, A., & Shah, K. (2020). Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass. Global Journal of Environmental Science and Management, 6(1), 97-108. doi: 10.22034/GJESM.2020.01.08.
Iranmanesh, Y. (2014). Assessment on biomass estimation methods and carbon sequestration of Quercus brantii Lindl. in Chaharmahal & Bakhtiari forests. (PhD Thesis), Tarbiat Modares University (In Persian).
Ji, L., & Peters, A.J. (2007). Performance evaluation of spectral vegetation indices using a statistical sensitivity function. Remote Sensing of Environment, 106 (1), 59–65. doi: 10.1016/j.rse.2006. 07.010
Kronseder, K., Ballhorn, U., Böhm, V., & Siegert, F. (2012). Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 18, 37-48. doi: 10.1016/j.jag.2012.01.010
Lu, D. (2005). Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing, 26(12), 2509–2525. doi: 10.1080/ 01431160500142145
Lu, Dengsheng, Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9 (1), 63–105. doi: 10.1080/17538947.2014.990526
Luz, L. R., Giongo, V., Santos, A. M. D., Lopes, R. J. D. C., & Júnior, C. D. L. (2022). Biomass and vegetation index by remote sensing in different caatinga forest areas. Ciência Rural, 52. doi: 10.1590/0103-8478cr20201104
Mahmoudi, H., Pir Bavaghar, M., & Fatehi, P. (2020). Deforestation Risk Zoning Using Analytical Hierarchy Process. Geography and Environmental Sustainability, 10(3), 91-106. doi: 10.22126/ges.2020.5799.2299 (In Persian).
Miri, N., Darvishsefet, A., Shakeri, Z., & Zargham, N. (2017). Estimation of leaf area index in Zagros forests using Landsat 8 data. Iranian Journal of Forest, 9(1), 29-42. https://www. jf-isaforestry.ir/article_47046.html?lang=fa (In Persian).
Mirrajabi, H., Oladi, J., & Mataji, A. (2016). Estimating above Ground Carbon Storage in Urban Afforestation Using Satellite Data (Case Study: Chitgar Forest Park in Tehran). Ecology of Iranian Forests, 4 (7), 35-42. https://ifej.sanru.ac.ir/article-1-223-fa.pdf (In Persian).
Moradi, F., Darvishsefat, A. A., Namiranian, M., & Ronoud, G. (2018). Investigating the capability of Landsat 8 OLI data for estimation of aboveground woody biomass of common hornbeam (Carpinus betulus L.) stands in Khyroud Forest. Iranian Journal of Forest and Poplar Research, 26(3), 406-420. doi: 10.22092/ijfpr.2018.117743 (In Persian)
Moradi, G., Pir Bavaghar, M., Shakeri, Z., & Fatehi, P. (2020). Leaf area index estimation in the northern Zagros forests using remote sensing (Case study: a part of Baneh forests). Forest Research and Development, 6(4), 679-693. doi: 10.30466/jfrd.2020.120986 (In Persian).
Mutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399-406. doi: 10.1016/j.jag.2012.03.012
Nilsson, M., Folving, S., Kennedy, P., Puumalainen, J., Chirici, G., Corona, P., Marchetti, M., Olsson, H., Ricotta, C., Ringvall, A., Stahl, G., & Tomppo, E. (2004). Combining remote sensing and field data for deriving unbiased estimates of forest parameters over large regions. (eds) Advances in Forest Inventory for Sustainable Forest Management and Biodiversity Monitoring. Forestry Sciences, vol 76. Springer, Dordrecht. doi: 10.1007/978-94-017-0649-0_ 2 10.1007/978-94-017-0649-0_2.
Pandey, P. C., Srivastava, P. K., Chetri, T., Choudhary, B. K., & Kumar, P. (2019). Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India. Environmental Monitoring and Assessment, 191(9), 593. doi: 10.1007/s10661-019-7730-7
Pinty, B., & Verstraete, M. (1992). GEMI: A Non-Linear Index to monitor global vegetation from satellites. Vegetation, 101, 15-20. doi: 10.1007/BF00031911
Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, G. G., Pierce, K. B., & Ohmann, J. L. (2010). Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114(5), 1053–1068. doi: 10.1016/j.rse.2009.12.018
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote sensing of environment, 48 (2), 119-126. doi: 10.1016/0034-4257 (94) 90134-1
Ramoelo, A., Cho, M., Mathieu, R., & Skidmore, A. K. (2014). The potential of Sentinel-2 spectral configuration to assess rangeland quality. Proc.SPIE, 9239, 92390C. doi: 10.1117/12.2067315
Ronoud, G., Fatehi, P., Darvishsefat, A. A., Tomppo, E., Praks, J., & Schaepman, M. E. (2021). Multi-sensor aboveground biomass estimation in the broadleaved Hyrcanian forest of Iran. Canadian journal of remote sensing, 47 (6), 818-834. doi: 10.1080/07038992.2021.1968811
Ruiz-Peinado, R., Montero, G., & Del Rio, M. (2012). Biomass models to estimate carbon stocks for hardwood tree species. Forest Systems, 21(1), 42-52. doi: http://dx.doi.org/10.5424/fs/ 2112211-02193
Saed Mocheshei, A., Pir Bavaghar, M., Shabanian, N., & Fatehi, P. (2019). Possibility of estimating the woody species diversity using Sentinel optical imagery (Case study: Marivan forests). Forest and Wood Products, 72(2), 101-110. doi: 10.22059/jfwp.2019.271590.984 (In Persian).
Safari, A., & Sohrabi, H. (2020). Using the bootstrap approach for comparing statistical modeling methods to estimate remotely-sensed aboveground biomass in Zagros forests. RS & GIS for natural resources, 11 (2), 49-67 (In Persian).
Saroei, S., Darvishsefat, A. A., & Namiranian, M. (2021). Modeling the Above-Ground Biomass Estimation in Zagros Oak Coppice Forests Using Radar Data of Sentinel-1 Satellite. Iranian Journal of Remote Sensing & GIS, 12 (4), 35-52. doi: 10.52547/gisj.12.4.35 (In Persian).
Shamsoddini, A., & Ahmadi, W. (2020). Spatio – Temporal Estimation of Carbon Monoxide and Nitrogen Dioxide based on Remote Sensing Data and Ancillary Data in Tehran. Geography and Environmental Sustainability, 10(3), 107-124. doi: 10.22126/ges.2020.4227.2057 (In Persian).
Singh, C., Karan, S. K., Sardar, P., & Samadder, S. R. (2022). Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis. Journal of Environmental Management, 308, 114639. doi:10.1016/j.jenvman.2022.114639
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. doi: 10.1016/0034-4257(79)90013-0
Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., & Naghavi, H. (2017). Estimation of aboveground biomass using optical and radar images (Case study: Nav-e Asalem forests, Gilan). Iranian Journal of Forest and Poplar Research, 25(2), 320-331. doi: 10.22092/ijfpr.2017.111776 (In Persian).
Xue, J., & Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors, 2017, 1353691. doi: 10.1155/2017/1353691.
Zhang, C., Denka, S., Cooper, H., & Mishra, D. R. (2018). Quantification of sawgrass marsh aboveground biomass in the coastal Everglades using object-based ensemble analysis and Landsat data. Remote Sensing of Environment, 204, 366–379. doi: 10.1016/j.rse.2017.10.018.
Zhang, Y., & Wang, R. (2022). Estimation of aboveground biomass of vegetation based on landsat 8 OLI images. Heliyon, 8(11), e11099. doi: 10.1016/j.heliyon.2022.e11099.