References
Aghdam, I. N., Pradhan, B. & Panahi, M. (2017). Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference system (ANFIS) at southern Zagros Mountains in Iran. Environmental Earth Sciences, 76 (6), 237.
Ajal Louian, R., Mir Sanei, R. & Fatehi, L. (2013). Applied Landslide Recognition and Analysis. Isfahan. University Jihad Publications (In Persian).
Asghari, S. & Blavasi, I. A. (2018). Comparison of artificial neural network model with fuzzy logic model in landslide risk assessment Case study: Seymareh Chenar catchment. Quantitative Geomorphological Research, 7 (2), 158-182 (In Persian).
Ayalew, L. & Yamagishi, H. (2005. (The application of GIS-based Logistic regression for landslide susceptibility mapping in the Kakuda-Yaahiko Mountains, central Japan, Geomorphology,65, 15-31.
Baboli Mukher, H., Shirani, C. & Taghian, A. (2017). Evaluation of landslide sensitivity zoning map using a combination of reliability factor and logistic regression using geomorphometric indices. Quantitative Geomorphological Research, 7 (3), 116 (In Persian).
Broeckx, J., Vanmarcke, M., Duchateau, R. & Poesen, J.) 2018(. A data-based landslide susceptibility map of Africa. Earth-Science Reviews, October 2018, 102-121. https://doi.org/10.1016/j.earscirev.2018.05.002.
Chang, J. M., Chen, H., Jou, B. J. D., Tsou, N. C. & Lin, G. W. (2017). Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan. Engineering Geology, 231, 81-87.
Chen, W., Xie, X., Peng, J., Wang, J., Duan, Z. & Hong, H. (2017). GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models. Geomatics. Natural Hazards and Risk, 1-24.
Colkesen, I., Sahin, E. & Kavzoglu, T. (2016). Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression. Journal of African Earth Sciences, 118, 53-64.
Dai, F. C. & Lee, C. F. (2012). Land slide characteristics and slope instability modeling using GIS, Lantau, Hong kong Geomorphology, 42, 213-228.
Das, I., Sahoo, S., Van Westen, C., Stein, A. & Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114 (4), 627-637.
Dou, J., Yamagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y. & Zhu, Z. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78 (3), 1749-1776.
Foerster, S., Wilczok, C., Brosinsky, A. & Segl, K. (2017). Assessment of sediment con-nectivity from vegetation cover and topography using remotely sensed data in a dryland catchment in the Spanish Pyrenees. Soils Sediments 14, 1982-2000.
Gigovic, L., Drobnjak, S. & Pamucar, D. (2019). The Application of the Hybrid GIS Spatial Multi- Criteria Decision Analysis Best–Worst Methodology for Landslide Susceptibility Mapping, International. Jornal of Geo-Information, 8 (2), 1-29.
Hanifinia, A., Nazarnejad, H., Najafi, S. & Kornejady, A. (2021). Prioritization of Effective Factors on Landslide Occurrence and Mapping of its Sensitivity in CherikAbad Watershed, Urmia Using Shannon Entropy Model. Watershed Management Reserch, 33 (4), 32-48.
Haque, U., Paula, F. D., Silva Graziella, Devoli., Pilz, J., Zhao, B., Khaloua, A., Wilopoi, W.,Andersen,P., Luk, P., Lee, J., Yamamoto, T., Keellings, D. & Wuo, J. H., (2019). The human cost of global warming: Deadly landslides and their triggers (1995-2014). Science of The Total Environment, 682, 673-684.
Le, L., Lin, Q. & Wang, Y. (2017). Landslide susceptibility mapping on a global scale using the method of logistic regression. Natural Hazards and Earth System Sciences, 17 (8), 1411.
Li, Z., Lianghao, H., Linyu, F., Jinsong, H., Faming, H., Jiawu, C., Zihe, Z. & Yuhao, W. (2020). Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network. Sensors (Basel), 20 (6), 1576.
Moazez, S., Rustaei, Sh. & Rahimpour, T. (2019). Landslide risk zoning in Nahand Chay catchment using ANP model and GIS technique. Quantitative Geomorphological Research, 8 (2), 23-37 (In Persian).
Mohammadnia, M. & Fallah Qalehri, Gh. A. (2017). Simulation of landslide probability using fuzzy logic and hierarchical analysis process. Applied Research in Geographical Sciences, 18 (48), 130-115 (In Persian).
Naseri, A., Hejazi, A. & Rezaei Moghadam, M. H. (2020). Landslide risk zoning using artificial neural network model downstream of Sanandaj Dam. Quarterly Journal of Environmental Erosion Research, 10 (1), 19-19 (In Persian).
Nojavan, M. R. Shah Zaidi, S., Davoodi, M. & Amin al-Ruayaei, H. (2019). Landslide zoning using two models of hierarchical and fuzzy analysis process (Case study: Kameh watershed, Isfahan province). Quantitative Geomorphological Research, 7 (4), 159-142 (In Persian).
Pham, B. T., Jaafari, A., Prakash, I. & Bui, D. T. (2019). A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 78 (4), 2865-2886.
Polykretis, C. & Chalkias, C. (2018). Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models. Natural hazards, 93 (1), 249-274.
Rajabi, M., Tak Zare, A. & Rezaei Moghadam, M. H. (2020). Landslide risk potential zoning using the studied neural network model: Qazvin Province catchment area. Quantitative Geomorphology Quarterly, 9 (3), 185-171 (In Persian).
Rossi, M., Guzzetti, F., Salvati, P., Donnini, M., Napolitano, E. & Bianchi, C. (2019). A predictive model of societal landslide risk in Italy, Earth-Science Reviews, 196, 1-19.
Rustaei, Sh., Hejazi, A., Rajabi, M., Jalali, N., Najafi Igdir, A. (2019). Application of fuzzy logic in landslide risk zoning in Nazlouchai watershed. Quantitative Geomorphological Research, 6 (4), 103-119 (In Persian).
Sharma, S. & Mahajan, A. K. (2019). A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India. Bulletin of Engineering Geology and the Environment, 78 (4), 2431-2448.
Shirzadi, A., Soleimani, K., Habibnejad, M., Kavian, A. & Chapi, K. (2017). A Novel Ensemble Algorithm Based Model for Shallow Landslide Susceptibility Assessment Around the Bijar Cityl. Geography and Development Iranian Journal, 15 (46), 225-246.
Vojtekova, J. & Vojtek, M. (2020). Assessment of landslide susceptibility at a localspatial scale applying the multi-criteria analysisand GIS: a case study from Slovaki, Geomatics. Natural Hazards and Risk, 11 (1), 131-148.