References
Agirre-Basurko, E., Ibarra-Berastegi, G. & Madariaga, I. (2006). Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environmental Modelling & Software, 21 (4), 430-446.
Alimissis, A., Philippopoulos, K., Tzanis, C. G. & Deligiorgi, D. (2018). Spatial estimation of urban air pollution with the use of artificial neural network models. Atmospheric environment, 191, 205-213.
Almaraz, M., Bai, E., Wang, C., Trousdell, J., Conley, S., Faloona, I. & Houlton, B. Z. (2018). Agriculture is a major source of NOx pollution in California.
Science advances,
4 (1), 347-361. https://doi.org/
10.1126/sciadv.aao3477.
Amirnejad, H. & Bahmanpouri, S. (2013). Integration of environmental and economic goals of agricultural operators in determining the optimal cultivation pattern; Case study: Beiza plain of Fars province. Agricultural Economics Research Quarterly, 5 (18), 74-91 (In Persian).
Azid, A., Juahir, H., Toriman, M. E., Kamarudin, M. K. A., Saudi, A. S. M., Hasnam, C. N. C. & Osman, M. R. (2014). Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia. Water, Air, & Soil Pollution, 225 (8), 206-223.
Bilgili, F., Koçak, E. & Bulut, Ü. (2016). The dynamic impact of renewable energy consumption on CO
2 emissions: a revisited Environmental Kuznets Curve approach.
Renewable and Sustainable Energy Reviews,
54 (8), 838-845.
https://doi.org/10.1016/j.rser.2015.10.080.
Bollen, J. (2015). The value of air pollution co-benefits of climate policies: analysis with a global sector-trade CGE model called WorldScan.
Technological Forecasting and Social Change,
90, 178-191.
https://doi.org/10.1016/j.techfore.2014.10.008.
Bougoudis, I., Demertzis, K. & Iliadis, L. (2016). Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning.
Integrated Computer-Aided Engineering,
23 (2), 115-127. https://doi.org/
10.3233/ICA-150505.
Brauer, M., Freedman, G., Frostad, J., Van Donkelaar, A., Martin, R., Dentener, F. & Balakrishnan, K. (2015). Ambient air pollution exposure estimation for the global burden of disease 2013.
Environmental science & technology,
50 (1), 79-88.
https://doi.org/10.1021/acs.est. 5b03709.
Chauhan, N. S., Mohapatra, P. K. J. & Pandey, K. P. (2006). Improving energy productivity in paddy production through benchmarking: an application of data envelopment analysis.
Energy Conversion and Management, 47, 1063- 1085. https://doi.org/
10.1016/j.enconman. 2005.07.004.
Chlingaryan, A., Sukkarieh, S. & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review.
Computers and electronics in agriculture,
151, 61-69. https://doi.org/
10.1016/ j.compag.2018.05.012.
Chowdhury, S., Dey, S., Tripathi, S. N., Beig, G., Mishra, A. K. & Sharma, S. (2017). “Traffic intervention” policy fails to mitigate air pollution in megacity Delhi.
Environmental science & policy.
74, 8-13. https://doi.org/
10.1016/j.envsci.2017.04.018.
Christopher, W., Joshua, S., Andrew, L., Nicholas, Z., Kimberley, A., David, A. & Jason, D. (2018). Inequity in consumption of goods and services adds to racial–ethnic disparities in air pollution exposure. Journal of PANS, 38 (5), 62-87. doi.org/10.1073/ pnas.1818859116.
Elhami, B., Akram, A. & Khanali, M. (2016). Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches. Information processing in agriculture, 3 (3), 190-205. https://doi.org/10.22059/ijbse.2017.60264 (In Persian).
Feng, X., Fu, T., Cao, H., Tian, H., Fan, Q. & Chen, X. (2019). Neural network predictions of pollutant emissions from open burning of crop residues: Application to air quality forecasts in southern China. Atmospheric Environment, 204, 22-31.
Ghazi, S., Dugdale, J. & Khadir, T. (2015). A Multi-Agent based Approach for Simulating the Impact of Human Behaviours on Air Pollution. Informatica, 39, 501-505.
Gurjar, B., Ravindra, K. & Nagpure, A. S. (2016). Air pollution trends over Indian megacities and their local-to-global implications.
Atmospheric Environment,
142, 475-495. https://doi.org/
10.1016/j.atmosenv.2016.06.030.
Harati, J., Islamluian, K., Qatmiri, M. & Hadian, A. (2014). Analysis of Welfare Damages Caused by Environmental Pollution in Iran (with Dynamic System Approach). Quarterly Journal of Economic Research (Sustainable Growth and Development), 14 (4), 113-147 (In Persian).
Jahangard, E. (2014). Prioritize investment in Iran's economic activities in terms of environmental pollution. Parliament and Strategy, 21 (80), 137-168 (In Persian).
Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I. & Keating, B. A. (2017). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science.
Agricultural systems,
155, 269-288.
https://doi.org /10.1016/j.agsy.2016.10.002.
Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A. & Chau, K. W. (2019). Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production.
Science of the Total Environment.
664, 1005-1019.
https://doi.org/10.1016/j.scitotenv.2019.02.004.
Khorshiddoost, A., Mohammadi, Gh., Aghlmand, F. & Hosseini Sadr, A. (2018). Statistical-descriptive analysis of the relationship between atmospheric parameters and air pollution in Tabriz. Environmental risk management, 5 (2), 217-230 (In Persian).
Liu, J., Mauzerall, D.L., Chen, Q., Zhang, Q., Song, Y., Peng, W. & Lin, W. (2016). Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source. Proceedings of the National Academy of Sciences. 113 (28), 7756-7761. https://doi.org/10. 1073/pnas.1604537113.
Mishra, D., Goyal, P. & Upadhyay, A. (2015). Artificial intelligence based approach to forecast PM2. 5 during haze episodes: A case study of Delhi, India.
Atmospheric Environment,
102, 239-248. https://doi.org/
10.1016/j.atmosenv.2014.11.050.
Mohajerdoost, V., Akram, A. & Mashhuri-Azar, M. (2008). Analysis of energy consumption and production costs of major agricultural products in Maragheh city. In: Nima Sobhani, Fifth National Congress of Agricultural Machinery Engineering and Mechanization, (pp. 26-33). Mashhad: Iranian Association of Agricultural Machinery Engineering and Mechanization, Ferdowsi University of Mashhad (In Persian).
Mohsenzadeh, F., HezarJaribi, A., Sharifan, H. & Dehghani, A. (2012). Optimization of cultivation pattern using genetic algorithm method (Case study: Aqqala region). In: Ali Jamali, National Conference on Optimal Utilization of Water Resources, (pp. 63-69). Dezful: Islamic Azad University, Dezful Branch (In Persian).
Ostadzad, A. & Bohloli, P. (2015). The effect of renewable energies on the Kuznetsi environmental curve in Iran. Applied Theories of Economics. 2 (2), 127-154 (In Persian).
Perera, F. P. (2016). Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environmental health perspectives.
125(2), 141-148.
https://doi.org/10.1289/EHP299.
Rao, S., Klimont, Z., Smith, S. J., Van Dingenen, R., Dentener, F., Bouwman, L. & Reis, L. A. (2017). Future air pollution in the Shared Socio-economic Pathways.
Global Environmental Change.
42, 346-358.
https://doi.org/10.1016/j.gloenvcha.2016.05.012.
Robarge, G. M. & Benforado, J. (2018). Reducing Agricultural Impacts on the Environment: Current EPA Program and Research Activities–And Future Directions.
In Integrating Sustainable Agriculture, Ecology, and Environmental Policy,
45, 123-140. https://doi.org /
10.1300/J064v02n03_10.
Saligheh, M. & Kakhaki Mahneh, H. (2015). Investigating the relationships between climate elements and air pollution fluctuations (Case: Mashhad). Geography and Environmental Hazards, 14 (3), 77-94 (In Persian).
Shaddick, G., Thomas, M. L., Green, A., Brauer, M., van Donkelaar, A., Burnett, R. & Gumy, S. (2018). Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution.
Journal of the Royal Statistical Society: Series C (Applied Statistics),
67 (1), 231-253.
https://doi.org/10.1111/rssc.12227.
Shamshiri, R. R., Kalantari, F., Ting, K. C., Thorp, K. R., Hameed, I. A., Weltzien, C., Ahmad, D. & Shad, Z. (2018). Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture.
International Journal of Agricultural and Biological Engineering,
11 (1), 1-22.
https://doi.org/10.25165/j.ijabe. 20181101.3210.
Shamsoddini, A. & Ahmadi, W. (2020). Spatial-temporal estimation of carbon monoxide and nitrogen dioxide pollutants in Tehran based on remote sensing data and auxiliary data. Geography and environmental sustainability, 10 (3), 107-124 (In Persian).
Shushtarian, A., Zibaei, M. & Soltani, Gh. (2008). Investigating the sustainability of agricultural systems according to economic and environmental goals: A case study in the Camphiroz region of Fars province. Agricultural Economics Quarterly, 4(4), 79-96 (In Persian).
Sicard, P., Augustaitis, A., Belyazid, S., Calfapietra, C., de Marco, A., Fenn, M. & Serengil, Y. (2016). Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems.
Environmental pollution,
213, 977-987. https://doi.org/
10.1016/j.envpol. 2016.01.075.
Sueyoshi, T. & Yuan, Y. (2015). China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution.
Energy Economics,
49, 239-256. https://doi.org/
10.1016/j.eneco.2015.01.024.
Tiwari, D.N., Loof, R. & Paudy, G. N. (1999). Environment Economic Decision Making In Lowland Agriculture Using Multicriteria Analysis Techniques. Agricultural System, 60 (1), 99-112.
Yu, S., Li, P., Wang, L., Wu, Y., Wang, S., Liu, K. & Zhang, X. (2018). Mitigation of severe urban haze pollution by a precision air pollution control approach.
Scientific reports,
8 (1), 51-81.
https://doi.org/10.1038/s41598-018-26344-1.
Zavala, J., Krug, J. D., Warren, S. H., Krantz, Q. T., King, C., McKee, J. & Meier, M. J. (2018). Evaluation of an air quality health index for predicting the mutagenicity of simulated atmospheres.
Environmental science & technology,
52 (5), 3045-3053.
https://doi.org/ 10.1021/acs.est.8b00613.
Zheng, D. & Shi, M. (2016). Multiple environmental policies and pollution haven hypothesis: evidence from China's polluting industries.
Journal of Cleaner Production,
141, 295-304.
https://doi.org/10.1016/j.jclepro.2016.09.091.